Restenosis following angioplasty in the swine coronary artery is inhibited by an orally active PDGF-receptor tyrosine kinase inhibitor, RPR101511A. (17/1894)

BACKGROUND: Platelet-derived growth factor (PDGF), a purported mediator of arterial response to injury, stimulates proliferation, chemotaxis, and matrix production by activation of its membrane receptor tyrosine kinase. Because these activities underlie restenosis, inhibition of the PDGF-receptor tyrosine kinase (PDGFr-TK) is postulated to decrease restenosis. METHODS AND RESULTS: RPR101511A is a novel compound which selectively and potently inhibits the cell-free and in situ PDGFr-TK and PDGFr-dependent proliferation and chemotaxis in vascular smooth muscle cells (VSMC). To evaluate the effect of RPR101511A (30 mg. kg-1. d-1 BID for 28 days following PTCA) on coronary restenosis, PTCA was performed in hypercholesterolemic minipigs whose left anterior descending (LAD) coronary artery had been injured by overdilation and denudation, yielding a previously existing lesion. Angiographically determined prePTCA minimal lumen diameters (MLD) were similar in vehicle and RPR101511A-treated pigs (1.98+/-0.09 versus 2.01+/-0.08 mm) and increased to the same extent in the 2 groups following successful PTCA (2.30+/-0.06 versus 2.52+/-0.13). At termination, there was an average 50% loss of gain in the vehicle-treated group but no loss of gain with RPR101511A (2.16+/-0. 05 versus 2.59+/-0.11, P<0.001). Morphometric analysis of the LAD showed that RPR101511A caused a significant decrease in total intimal/medial ratio (0.96+/-0.58 versus 0.67+/-0.09, P<0.05). CONCLUSIONS: RPR101511A, which acts by inhibition of the PDGFr-TK, completely prevented angiographic loss of gain following PTCA and significantly reduced histological intimal hyperplasia.  (+info)

ACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide. (18/1894)

Acute administration of the angiotensin-converting enzyme (ACE) inhibitor captopril enhances insulin-stimulated glucose transport activity in skeletal muscle of the insulin-resistant obese Zucker rat. The present study was designed to assess whether this effect is mediated by an increase in the nonapeptide bradykinin (BK), by a decrease in action of ANG II, or both. Obese Zucker rats (8-9 wk old) were treated for 2 h with either captopril (50 mg/kg orally), bradykinin (200 micrograms/kg ip), or the ANG II receptor (AT(1) subtype) antagonist eprosartan (20 mg/kg orally). Captopril treatment enhanced in vitro insulin-stimulated (2 mU/ml) 2-deoxyglucose uptake in the epitrochlearis muscle by 22% (251 +/- 7 vs. 205 +/- 9 pmol. mg(-1). 20 min(-1); P < 0.05), whereas BK treatment enhanced this variable by 18% (249 +/- 15 vs. 215 +/- 7 pmol. mg(-1). 20 min(-1); P < 0.05). Eprosartan did not significantly modify insulin action. The BK-mediated increase in insulin action was completely abolished by pretreatment with either the specific BK-B(2) receptor antagonist HOE 140 (200 micrograms/kg ip) or the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (50 mg/kg ip). Collectively, these results indicate that the modulation of insulin action by BK likely underlies the metabolic effects of ACE inhibitors in the insulin-resistant obese Zucker rat. Moreover, this modulation of insulin action by BK is likely mediated through B(2) receptors and by an increase in nitric oxide production and/or action in skeletal muscle tissue.  (+info)

Matrix metalloproteinase inhibition prevents colon cancer peritoneal carcinomatosis development and prolongs survival in rats. (19/1894)

Matrix metalloproteinases (MMP) are enzymes responsible for extracellular matrix degradation which play a role in cancer progression and metastatic spreading. We investigated the effects of the MMP inhibitor, batimastat, in vitro on the proliferation and invasiveness of the rat colon cancer cell line DHD/K12, and in vivo on the growth of an aggressive model of peritoneal carcinomatosis producing haemorrhagic ascites and metastases, obtained in the rat by i.p. injection of DHD/K12 cells. MMP production was studied in conditioned culture media, solid tumors and ascitic fluid. In vivo, after injection of tumor cells on day 0, rats received i.p. daily either batimastat (30 mg/kg) or equal volume of vehicle from day 2 until killing on day 43 (series I) or from day 13 until death (series II). The grade of peritoneal carcinomatosis, ascite volume, number and size of liver metastases were evaluated in both series, and survival in series II. MMPs-1, -2 and -9 were identified in culture media, tumors and ascites. In vitro, batimastat did not modify DHD/K12 cell proliferation and slightly reduced cell invasion. In vivo, in series I, batimastat treatment totally prevented peritoneal carcinomatosis and liver metastasis development. In series II, it significantly prolonged survival (P < 0.0002) and reduced peritoneal carcinomatosis (P < 0.001) and hepatic metastases number as compared with controls. However, batimastat-treated rats of the two series had peritoneal inflammation with marked ascites. Nevertheless, inhibition of MMP is a new therapeutic approach which may be promising in treatment of microtumors as in more advanced cancer stages.  (+info)

Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. (20/1894)

Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell-ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell-collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.  (+info)

Antitumor activity of ZD1694 (tomudex) against human head and neck cancer in nude mouse models: role of dosing schedule and plasma thymidine. (21/1894)

We studied the antitumor activity and toxicity of ZD1694 (tomudex), a specific inhibitor of thymidylate synthase (TS), in nude mice bearing human head and neck squamous cell carcinoma A253 and FaDu xenografts. Mice were treated by single i.v. push (i.v. x 1), i.v. push once a week for 3 weeks (weekly x 3), and i.v. push once a day for 5 days (daily x 5), and the maximum tolerated doses (MTDs) of ZD1694 were 300 mg/kg, 60 mg/kg/week, and 30 mg/kg/day, respectively. ZD1694 was moderately active against both A253 and FaDu xenografts. Antitumor activity was schedule-dependent in both tumors: weekly x 3 > or = i.v. x 1 >> daily x 5. In contrast, the rank order of toxicity was daily x 5 >> weekly x 3 > or = i.v. x 1. ZD1694 at the MTD produced 20% complete tumor regression and 20% partial tumor regression (PR) with i.v. x 1 and weekly x 3 schedules and 12-day tumor growth delay with daily x 5 schedule against FaDu xenografts. No complete tumor regression was achieved with ZD1694 with any schedule against A253; a 20% PR, 40% PR, and 10-day tumor growth delay were observed with i.v. x 1, weekly x 3, and daily x 5 schedules, respectively. The data indicate that ZD1694 was slightly more effective against FaDu than against A253. Of interest and potential clinical importance was the observation that ZD1694 was still active at doses lower than the MTD (> or =1/3 MTD), which showed a high therapeutic index and wide safety margin. Study of ZD1694 compared with 5-fluorouracil and 5-fluoro-2'-deoxyuridine at the MTD revealed that the antitumor activity of ZD1694 was comparable with or superior to 5-fluorouracil and 5-fluoro-2'-deoxyuridine against both A253 and FaDu xenografts, with less toxicity. High plasma thymidine in mouse relative to human (approximately 1.3 microM and <0.1 microM, respectively) may complicate the study of antitumor activity and toxicity of TS inhibitors with human tumor xenografts grown in the mouse. To test this hypothesis, we preadministered methoxypolyethyleneglycol-conjugated thymidine phosphorylase (MPEG-TPase; 2500 units/kg/dose) to reduce mouse plasma thymidine, then treated with various doses of ZD1694 using the daily x 5 or i.v. x 1 schedules in the A253 tumor model. MPEG-TPase significantly increased the toxicity of ZD1694; the MTD of ZD1694 plus MPEG-TPase was reduced 3- and 10-fold compared with ZD1694 alone for i.v x 1 and daily x 5 schedules, respectively. However, preadministration of MPEG-TPase did not potentiate the antitumor activity of ZD1694 with either schedule. The data indicate that the study of TS inhibitors in rodent models may not be suitable for predicting a safe dose for clinical study. However, rodent models, particularly human tumor xenografts, are still useful models for evaluation of antitumor activity and schedule selection for TS inhibitors.  (+info)

DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. (22/1894)

2, 5-bis(5-Hydroxymethyl-2-thienyl)furan (NSC 652287), is a representative of a series of thiophene derivatives that exhibit potent and selective antitumor activity against several tumor cell lines in the National Cancer Institute Anticancer Drug Screen. NSC 652287 has noticeable activity for the renal cell lines and produces cures in certain corresponding xenografts. The cellular mechanisms of action of NSC 652287 were therefore investigated in this study in greater detail. The most sensitive renal carcinoma cell line, A498, exhibited cell cycle arrest in G(0)-G(1) and G(2)-M at 10 nM NSC 652287, with increased p53 and p21(WAF1) protein. At higher concentrations, NSC 652287 still induced p53 elevation but with p21(WAF1) reduction and massive apoptosis. These results collectively suggested that NSC 652287 induced DNA damage. Using alkaline elution techniques, we found that NSC 652287 induced both DNA-protein and DNA-DNA cross-links with no detectable DNA single-strand breaks. These DNA-protein cross-links (DPC) persisted for at least 12 h after drug removal and their frequency was correlated with cytotoxicity in the renal cell lines studied. The most sensitive cells (A498) produced the highest DPC followed by the cell line with intermediate sensitivity (TK-10). DPC were minimal in the two resistant cell lines, ACHN and UO-31. Nonetheless, a similar degree of DPC occurred at doses imparting equitoxic effects. These results indicate that DNA is a primary target for the novel and potent anticancer thiophene derivative, NSC 652287. NSC 652287 did not cross-link purified DNA or mammalian topoisomerase I suggesting the importance of active metabolite(s) for the cross-linking activity.  (+info)

PGHS-2 inhibitors, NS-398 and DuP-697, attenuate the inhibition of PGHS-1 by aspirin and indomethacin without altering its activity. (23/1894)

Since the discovery of the inducible form of prostaglandin (PG) H synthase (PGHS), PGHS-2, considerable effort has been made to design selective inhibitors of this isozyme. N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) and 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonyl) thiophene (DuP-697) have been shown to interact reversibly with PGHS-1, while irreversibly inhibiting PGHS-2 in a time-dependent manner. In the present study we have tested the effects of DuP-697 and NS-398 on the activity of PGHS-1 and further explored the interactions between these agents and the inhibition of PGHS-1 by aspirin, indomethacin and ibuprofen. Three independent experimental systems, namely bovine aortic endothelial cells (BAEC), human fibroblasts and ram seminal vesicle microsomes were used to investigate the effects of DuP-697 and NS-398 on PGHS-1. The results show that DuP-697 and NS-398, at concentrations ranges which do not inhibit PGHS-1 activity, significantly attenuated the inhibition of PGHS-1 that was caused by aspirin and indomethacin. The same concentrations of DuP-697 and NS-398 did not affect the inhibition of PGHS-1 that was induced by the competitive reversible inhibitors ibuprofen and naproxen. Similar effects of DuP-697 and NS-393 were obtained with ram seminal vesicle microsomes. These results suggest that PGHS-2 inhibitors DuP-697 and NS-398 possibly interact with PGHS-1 at a site different from the enzyme's catalytic site, thus causing attenuation of PGHS-1 inhibition by aspirin and indomethacin without altering PGHS-1 basal activity or the ibuprofen-induced inhibition.  (+info)

Neurobiological and psychophysical mechanisms underlying the oral sensation produced by carbonated water. (24/1894)

Carbonated drinks elicit a sensation that is highly sought after, yet the underlying neural mechanisms are ill-defined. We hypothesize that CO(2) is converted via carbonic anhydrase into carbonic acid, which excites lingual nociceptors that project to the trigeminal nuclei. We investigated this hypothesis using three methodological approaches. Electrophysiological methods were used to record responses of single units located in superficial laminae of the dorsomedial aspect of trigeminal subnucleus caudalis (Vc) evoked by lingual application of carbonated water in anesthetized rats. After pretreatment of the tongue with the carbonic anhydrase inhibitor dorzolamide, neuronal responses to carbonated water were significantly attenuated, followed by recovery. Using c-Fos immunohistochemistry, we investigated the distribution of brainstem neurons activated by intraoral carbonated water. Fos-like immunoreactivity (FLI) was significantly higher in the superficial laminae of dorsomedial and ventrolateral Vc in animals treated with carbonated water versus controls. Dorzolamide pretreatment significantly reduced FLI in dorsomedial Vc. We also examined the sensation elicited by carbonated water in human psychophysical studies. When one side of the tongue was pretreated with dorzolamide, followed by bilateral application of carbonated water, a significant majority of subjects chose the untreated side as having a stronger sensation and assigned significantly higher intensity ratings to that side. Dorzolamide did not reduce irritation elicited by pentanoic acid. The present data support the hypothesis that carbonated water excites lingual nociceptors via a carbonic anhydrase-dependent process, in turn exciting neurons in Vc that are presumably involved in signaling oral irritant sensations.  (+info)