Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. (25/327)

Xanomeline is a potent agonist that is functionally selective for muscarinic M(1) receptors. We have shown previously that a significant fraction of xanomeline binding to membranes of Chinese hamster ovary (CHO) cells expressing the M(1) receptors occurs in a wash-resistant manner and speculated that this persistent binding likely does not take place at the primary binding site on the receptor. In the present work we investigated in depth the pharmacological characteristics of this unique mode of xanomeline binding and the effects of this binding on the interaction of classical competitive ligands with the receptor in CHO cells that express the M(1) muscarinic receptor. Onset of persistent binding of xanomeline to the M(1) muscarinic receptor was fast and was only slightly hindered by atropine. Its dissociation was extremely slow, with a half-life of over 30 h. Although persistently bound xanomeline strongly inhibited binding of the classical antagonist N-methylscopolamine (NMS) to the receptor, there are multiple indications that this is not the result of competition at the same binding domain. Namely, wash-resistant binding of xanomeline only slightly slowed the rate of NMS association, but enhanced the rate of NMS dissociation. Moreover, preincubation with xanomeline followed by extensive washing brought about an apparent decrease in the number of NMS binding sites. Our findings are best interpreted in terms of allosteric interactions between xanomeline-persistent binding to the M(1) muscarinic receptor and competitive ligands bound to the classical receptor binding site.  (+info)

A simple spectrophotometric method for the determination of copper in industrial, environmental, biological and soil samples using 2,5-dimercapto-1,3,4-thiadiazole. (26/327)

A simple spectrophotometric method is presented for the rapid determination of copper at a trace level using 2,5-dimercapto-1,3,4-thiadiazole (DMTD) as a new spectrophotometric reagent. The method is based on the reaction of non-absorbent DMTD in a slightly acidic (0.002-0.014 mol dm(-3) sulfuric acid) aqueous solution with copper(II) to produce a highly absorbent greenish-yellow chelate product that has an absorption maximum at 390 nm. The reaction is instantaneous and the absorbance remains stable for 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 5.65 x 10(4) dm3 mol(-1) cm(-1) and 10 ng cm(-2) of CuII, respectively. Linear calibration graphs were obtained for 0.1-20 microg cm(-3) of CuII; the stoichiometric composition of the chelate is 1:2 (Cu:DMTD). A large excess of over 50 cations, anions and complexing agents (e.g. tartrate, oxalate, citrate, phosphate, thiourea, SCN-) do not interfere in the determination. The method was successfully used for the determination of copper in several Standard Reference Materials as well as in some environmental water samples, biological samples, soil samples and solutions containing both copper(I) and copper(II) and complex synthetic mixtures. The method has high precision and accuracy (s = +/-0.01 for 0.5 microg cm(-1)).  (+info)

Inhibition of muscle carbonic anhydrase slows the Ca(2+) transient in rat skeletal muscle fibers. (27/327)

A countertransport of H(+) is coupled to Ca(2+) transport across the sarcoplasmic reticulum (SR) membrane. We propose that SR carbonic anhydrase (CA) accelerates the CO(2)-HCO reaction so that H(+) ions, which are exchanged for Ca(2+) ions, are produced or buffered in the SR at sufficient rates. Inhibition of this SR-CA is expected to reduce the rate of H(+) fluxes, which then will retard the kinetics of Ca(2+) transport. Fura 2 signals and isometric force were simultaneously recorded in fiber bundles of the soleus (SOL) and extensor digitorum longus (EDL) from rats in the absence and presence of the lipophilic CA inhibitors L-645151, chlorzolamide (CLZ), and ethoxzolamide (ETZ), as well as the hydrophilic inhibitor acetazolamide (ACTZ). Fura 2 and force signals were analyzed for time to peak (TTP), 50% decay time (t(50)), and their amplitudes. L-645151, CLZ, and ETZ significantly increased TTP of fura 2 by 10-25 ms in SOL and by 5-7 ms in EDL and TTP of force by 6-30 ms in both muscles. L-645151 and ETZ significantly prolonged t(50) of fura 2 and force by 20-55 and 40-160 ms, respectively, in SOL and EDL. L-645151, CLZ, and ETZ also increased peak force of single twitches and amplitudes of fura fluorescence ratio (R(340/380)) at an excitation wavelength of 340 to 380 nm. All effects of CA inhibitors on fura 2 and force signals could be reversed. ACTZ did not affect TTP, t(50), and amplitudes of fura 2 signals or force. L-645151, CLZ, and ETZ had no effects on myosin-, Ca(2+)-, and Na(+)-K(+)-ATPase activities, nor did they affect the amplitude and half-width of action potentials. We conclude that inhibition of SR-CA by impairing H(+) countertransport is responsible for deceleration of intracellular Ca(2+) transients and contraction times.  (+info)

Cefazolin administration and 2-methyl-1,3,4-thiadiazole-5-thiol in human tissue: possible relationship to hypoprothrombinemia. (28/327)

Cephalosporin antibiotics with structures that include the heterocyclic leaving group 1-methyltetrazole-5-thiol (MTT) can cause hypoprothrombinemia and hemorrhage as a result of MTT-dependent inhibition of the gamma-carboxylation of glutamate. The structure of cefazolin also includes a heterocyclic thiol, 2-methyl-1,3,4-thiadiazole-5-thiol (MTD), and this compound can also inhibit the gamma-carboxylation of glutamate. However, unlike MTT, which is known to be present in vivo after the administration of drugs that include this structure, there have been no reports that MTD is present in vivo after cefazolin administration. We set out to determine whether MTD might be present in the tissues of patients treated with cefazolin prior to surgery. To do that, we took advantage of the fact that heterocyclic thiols can undergo S-methylation catalyzed by the genetically polymorphic drug-metabolizing enzyme thiopurine S-methyltransferase (TPMT). Initially, we tested recombinant human TPMT as a "reagent" to S-methylate MTD. MTD was a substrate for TPMT-catalyzed S-methylation, with an apparent K(m) value of 63 micro M. Recombinant TPMT, with [(14)C-methyl]S-adenosyl-L-methionine as a cosubstrate, was then used to radioactively label a methyl acceptor substrate present in liver and kidney cytosol preparations from patients who had been treated preoperatively with cefazolin. Pooled renal cytosol from 10 of those patients was used to purify and isolate the methylated product by reverse-phase high-performance liquid chromatography. That methylated compound coeluted with S-methyl MTD. When the methylated product was subjected to tandem mass spectrometry, it was identified as S-methyl MTD. Therefore, MTD is present in the tissues of patients treated with cefazolin. These observations also raise the possibility that the TPMT genetic polymorphism may represent a risk factor for cefazolin-induced hypoprothrombinemia since subjects who genetically lack TPMT would be unable to catalyze this MTD biotransformation pathway.  (+info)

Mechanism of action of 2,2'-(methylenediimino)bis-1,3,4-thiadiazole (NSC 143019), an antitumor agent. (29/327)

The mechanism of action of 2,2'-(methylenediimino)bis-1,3,4-thiadiazole (NSC 143019) was clarified by studies on its effects on monolayer cultures of growing cells of the mouse cell line BALB/3T3. At concentrations below 50 muM, NSC 143019 specifically inhibited DNA and RNA syntheses without appreciably affecting protein synthesis. The syntheses of DNA and RNA were inhibited equally and concomitantly by the compound. The inhibition was reversed by removal of the compound and was prevented competitively by an equimolar amount of nicotinamide. It was also reversed completely by guanosine (0.1 mM) or deoxyguanosine (0.1 mM) and was reversed partially by xanthosine (1 mM). Other nucleosides did not influence the inhibition. The inhibition of DNA synthesis by NSC 143019 was not due to inhibition of RNA synthesis, and vice-versa. NSC 143019 inhibited the conversion of [8-14C]hypoxanthine to acid-soluble and -insoluble guanine nucleotides but not to adenine nucleotides. It was strongly suggested from these results that at concentrations of NSC 143019 below 50 muM the primary action of this compound might be due to the inhibition of GMP biosynthesis at the step of conversion of IMP to xanthosine 5'-phosphate.  (+info)

Transgenic studies on the involvement of cytokinin and gibberellin in male development. (30/327)

Numerous plant hormones interact during plant growth and development. Elucidating the role of these various hormones on particular tissue types or developmental stages has been difficult with exogenous applications or constitutive expression studies. Therefore, we used tissue-specific promoters expressing CKX1 and gai, genes involved in oxidative cytokinin degradation and gibberellin (GA) signal transduction, respectively, to study the roles of cytokinin and GA in male organ development. Accumulation of CKX1 in reproductive tissues of transgenic maize (Zea mays) resulted in male-sterile plants. The male development of these plants was restored by applications of kinetin and thidiazuron. Similarly, expression of gai specifically in anthers and pollen of tobacco (Nicotiana tabacum) and Arabidopsis resulted in the abortion of these respective tissues. The gai-induced male-sterile phenotype exhibited by the transgenic plants was reversible by exogenous applications of kinetin. Our results provide molecular evidence of the involvement of cytokinin and GA in male development and support the hypothesis that the male development is controlled in concert by multiple hormones. These studies also suggest a potential method for generating maintainable male sterility in plants by using existing agrochemicals that would reduce the expense of seed production for existing hybrid crops and provide a method to produce hybrid varieties of traditionally non-hybrid crops.  (+info)

The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. (31/327)

Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects (EPS) at therapeutically relevant doses. In the present study, we examined whether the xanomeline-induced functional dopamine antagonism found in rodent studies could also be observed in nonhuman primates. In addition, we studied whether the lack of EPS observed in rodents also applies to primates. To this end, we investigated the effects of xanomeline on the behavior induced by D-amphetamine and (-)-apomorphine in drug-naive Cebus apella monkeys. Antipsychotic compounds antagonize amphetamine-induced motor unrest and stereotypies in this species. Xanomeline inhibited D-amphetamine-induced motor unrest, stereotypies and arousal as well as apomorphine-induced stereotypies and arousal in drug-naive Cebus apella monkeys. Xanomeline did not induce EPS but vomiting occurred in some monkeys at high doses, in accordance with emetic events observed in Alzheimer patients following xanomeline administration. Even when xanomeline was tested in EPS-sensitized Cebus apella monkeys, EPS were not observed at the dose range of xanomeline used in the D-amphetamine-apomorphine combination study (0.5-3 mg/kg). However, when xanomeline was tested at 4 mg/kg, moderate dystonia was seen in two out of three monkeys. It is concluded that xanomeline inhibits D-amphetamine- and (-)-apomorphine-induced behavior in Cebus apella monkeys at doses that do not cause EPS. These data further substantiate that muscarinic receptor agonists may be useful in the pharmacological treatment of psychosis.  (+info)

A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. (32/327)

In nonexcitable cells, Ca(2+) entry is mediated predominantly through the store depletion-dependent Ca(2+) channels called store-operated Ca(2+) (SOC) or Ca(2+) release-activated Ca(2+) channels. YM-58483, a pyrazole derivative, inhibited an anti-CD3 mAb-induced sustained Ca(2+) influx in acute T cell leukemia, Jurkat cells. But it did not affect an anti-CD3 mAb-induced transient intracellular Ca(2+) increase in Ca(2+)-free medium, nor anti-CD3 mAb-induced phosphorylation of phospholipase Cgamma1. It was suggested that YM-58483 inhibited Ca(2+) influx through SOC channels without affecting the TCR signal transduction cascade. Furthermore, YM-58483 inhibited thapsigargin-induced sustained Ca(2+) influx with an IC(50) value of 100 nM without affecting membrane potential. YM-58483 inhibited by 30-fold the Ca(2+) influx through SOC channels compared with voltage-operated Ca(2+) channels, while econazole inhibited both SOC channels and voltage-operated Ca(2+) channels with an equivalent range of IC(50) values. YM-58483 potently inhibited IL-2 production and NF-AT-driven promoter activity, but not AP-1-driven promoter activity in Jurkat cells. Moreover, this compound inhibited delayed-type hypersensitivity in mice with an ED(50) of 1.1 mg/kg. Therefore, we concluded that YM-58483 was a novel store-operated Ca(2+) entry blocker and a potent immunomodulator, and could be useful for the treatment of autoimmune diseases and chronic inflammation. Furthermore, YM-58483 would be a candidate for the study of capacitative Ca(2+) entry mechanisms through SOC/CRAC channels and for identification of putative Ca(2+) channel genes.  (+info)