2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage. (1/327)

We have pursued the hypothesis that the carbonyl modification of proteins by glycoxidation and lipoxidation reactions plays a role in atherogenesis. Human atherosclerotic tissues with fatty streaks and uremic arteriosclerotic tissues were examined, with specific antibodies, to detect protein adducts formed with carbonyl compounds by glycoxidation or lipoxidation reactions, i.e. advanced glycation end products (AGEs) or glycoxidation products, such as carboxymethyllysine (CML) and pentosidine, and lipoxidation products, such as malondialdehyde (MDA)-lysine and 4-hydroxy-nonenal (HNE)-protein adduct. All the four adducts were identified in the proliferative intima and in macrophage-rich fatty streaks. If the carbonyl modification is not a mere result but is a contributor to atherogenesis, inhibition of glycoxidation and lipoxidation reactions might prevent vascular tissue damage. We tested this hypothesis in rats following balloon injury of their carotid arteries, a model exhibiting a remarkable intimal thickening, which are stained positive for all the four adducts. Oral administration of 2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanili de (OPB-9195), an inhibitor of both glycoxidation and lipoxidation reactions, in rats following balloon injury effectively prevented the intimal thickening. These data suggest a role for the carbonyl modification of proteins by glycoxidation and lipoxidation reactions in most, if not all, types of vascular tissue damage ('carbonyl stress'), and the usefulness of inhibitors of carbonyl reactions for the treatment of vascular tissue damage.  (+info)

Effect of the hypocholesterolemic agent YM-16638 on cholesterol biosynthesis activity and apolipoprotein B secretion in HepG2 and monkey liver. (2/327)

YM-16638 ([[5-[[3-(4-acetyl-3-hydroxy-2-propylphenoxy)propyl]thio]-1,3,4-++ +thiadiazol-2-yl] thio] acetic acid) showed a strong hypocholesterolemic effect in humans and monkeys. To clarify the mechanism of this hypocholesterolemic effect, the action of YM-16638 on cholesterol biosynthesis in the cultured human hepatoma cell line HepG2 and cynomolgus monkey liver was examined. Cholesterol biosynthesis activity derived from [14C]acetic acid, [3H/14C]mevalonic acid or [14C]isopentenyl pyrophosphate substrates was significantly decreased, but not that from [3H]farnesyl pyrophosphate or [3H]squalene substrates in HepG2 cells treated with YM-16638. Simultaneously, treatment of these cells with YM-16638 changed neither the rate of apolipoprotein B synthesis from [35S]methionine nor its secretion. In addition, the activities of hepatic cholesterol biosynthesis enzymes HMG-CoA reductase, mevalonate kinase (MK), isopentenyl pyrophosphate isomerase (IPPI), farnesyl pyrophosphate synthase (FPPS), squalene synthase and squalene epoxidase were measured in monkeys fed a diet supplemented with YM-16638. Among these enzymes, MK, IPPI and FPPS activities in the YM-16638-treated group significantly decreased by 38%, 56% and 30%, respectively, when compared to those from control animals receiving no drug treatment. These results indicate that YM-16638 has the characteristics of a cholesterol biosynthesis inhibitor.  (+info)

Pharmacological analysis of the novel mode of interaction between xanomeline and the M1 muscarinic acetylcholine receptor. (3/327)

Previous findings in our laboratory suggested that the M1 muscarinic acetylcholine receptor (mAChR) agonist xanomeline exhibits a novel mode of interaction that involves persistent binding to and activation of the M1 mAChR, subsequent to extensive washout, as well as a possible insurmountable element. In the present study, we examined this interaction in greater detail, using Chinese hamster ovary cells transfected with the genes for the M1 mAChR and neuronal nitric oxide synthase. Pretreatment of cells with xanomeline, followed by extensive washout, resulted in elevated basal levels of neuronal nitric oxide synthase activity that were suppressed by the antagonists atropine or pirenzepine in a concentration-dependent manner. Analysis of the data yielded estimates of Schild slope factors and pKB values for the antagonists that were consistent with a model of simple competition between these latter agents and the persistently bound form of xanomeline. The ability of the antagonists to produce parallel dextral shifts of the concentration-response curves to carbachol and xanomeline was also investigated. The interaction between xanomeline and pirenzepine appeared to be insurmountable, but this may have been due to an equilibrium artifact. In contrast, the interaction between xanomeline and atropine conformed to a model of competition, indicating that the mode of interaction of free xanomeline at the M1 mAChR is pharmacologically identical with that of the persistently bound form. Radioligand binding studies also showed that the presence of various concentrations of xanomeline had no significant effect on the calculated affinity of atropine or pirenzepine in inhibiting the binding of [3H]N-methylscopolamine. Overall, these findings suggest that the persistent attachment of xanomeline to the M1 mAChR does not prevent this agonist from interacting with the classic binding site in a competitive fashion.  (+info)

Flavin-containing monooxygenase-mediated N-oxidation of the M(1)-muscarinic agonist xanomeline. (4/327)

The involvement of flavin-containing monooxygenases (FMOs) in the formation of xanomeline N-oxide was examined in various human and rat tissues. Expressed FMOs formed xanomeline N-oxide at a significantly greater rate than did expressed cytochromes P-450. Consistent with the involvement of FMO in the formation of xanomeline N-oxide in human liver, human kidney, rat liver, and rat kidney microsomes, this biotransformation was sensitive to heat treatment, increased at pH 8.3, and inhibited by methimazole. The latter two characteristics were effected to a lesser extent in human kidney, rat liver, and rat kidney microsomes than were observed in human liver microsomes, suggesting the involvement of a different FMO family member in this reaction in these tissues. As additional proof of the involvement of FMO in the formation of xanomeline N-oxide, the formation of this metabolite by a characterized human liver microsomal bank correlated with FMO activity. The FMO forming xanomeline N-oxide by human kidney microsomes exhibited a 20-fold lower K(M) (average K(M) = 5.5 microM) than that observed by the FMO present in human liver microsomes (average K(M) of 107 microM). The involvement of an FMO in the formation of xanomeline N-oxide in rat lung could not be unequivocally demonstrated. These data and those in the literature suggest that the increased prevalence of N-oxidized metabolites of xanomeline after s.c. dosing as compared with oral dosing may be due to differences in the affinity of various FMO family members for xanomeline or to differences in exposure to xanomeline that these enzymes receive under different dosing regimens.  (+info)

Thermodynamic and circular dichroism studies differentiate inhibitor interactions with the stromelysin S(1)-S(3) and S(')(1)-S(')(3) subsites. (5/327)

Interactions of stromelysin with a series of inhibitors representative of three chemical templates with distinct binding modes were examined. Unfolding temperatures for inhibitor complexes were 10 degrees C to 15 degrees C greater than for apo stromelysin. Minor changes in ellipticity in the far-UV CD spectra of complexes indicated that ligand-induced conformational changes were localized to the binding site and did not involve gross changes in protein folding. Isothermal titrating calorimetry of thiadiazole-containing inhibitors, which bind in the S(1)-S(3) subsites of stromelysin, indicated that the binding interaction was exothermic and only slightly favorable entropically. Near-UV CD spectra showed large positive ellipticity increases from 250 to 300 nm, consistent with an interaction between the benzene ring of the inhibitor and stromelysin residues Tyr155 and Tyr168. Interactions between stromelysin and amide-hydroxamate ligands, which bind in the S(')(1)-S(')(3) subsites, were found to be both enthalpically and entropically driven. Binding of this class of ligands resulted in modest negative ellipticity changes at 260-285 nm and positive increases at 292 nm. Stromelysin complexed to a lactam-hydroxamate inhibitor with structure extending into both the S(1)-S(3) and S(')(1)-S(')(3) subsites showed increased ellipticity at 245 nm and negative changes at 260-285 and 295 nm.  (+info)

The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist. (6/327)

Muscarinic M1 preferring agonists may improve cognitive deficits associated with Alzheimer's disease. Side effect assessment of the M1 preferring agonist WAY-132983 showed significant salivation (10 mg/kg i.p. or p.o.) and produced dose-dependent hypothermia after i. p. or p.o. administration. WAY-132983 significantly reduced scopolamine (0.3 mg/kg i.p.)-induced hyperswimming in mice. Cognitive assessment in rats used pretrained animals in a forced choice, 1-h delayed nonmatch-to-sample radial arm maze task. WAY-132983 (0.3 mg/kg i.p) significantly reduced scopolamine (0.3 mg/kg s.c.)-induced errors. Oral WAY-132983 attenuated scopolamine-induced errors; that is, errors produced after combining scopolamine and WAY-132983 (to 3 mg/kg p.o.) were not significantly increased compared with those of vehicle-treated control animals, whereas errors after scopolamine were significantly higher than those of control animals. With the use of miniosmotic pumps, 0.03 mg/kg/day (s.c.) WAY-132983 significantly reduced AF64A (3 nmol/3 microliter/lateral ventricle)-induced errors. Verification of AF64A cholinotoxicity showed significantly lower choline acetyltransferase activity in the hippocampi of AF64A-treated animals, with no significant changes in the striatal or frontal cortex. Cognitive assessment in primates involved the use of pretrained aged animals in a visual delayed match-to-sample procedure. Oral WAY-132983 significantly increased the number of correct responses during short and long delay interval testing. These effects were also apparent 24 h after administration. WAY-132983 exhibited cognitive benefit at doses lower than those producing undesirable effects; therefore, WAY-132983 is a potential candidate for improving the cognitive status of patients with Alzheimer's disease.  (+info)

Mechanism of the inhibitory effect of OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation. (7/327)

The accumulation in uremic plasma of reactive carbonyl compounds (RCO) derived from both carbohydrates and lipids ("carbonyl stress") contributes to uremic toxicity by accelerating the advanced glycation and lipoxidation of proteins. It was previously demonstrated that OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo- thiazolidin-5-ylacetanilide] inhibited the in vitro formation of advanced glycation end products (AGE) in uremic plasma. This study was designed to elucidate the mechanism of action of OPB-9195 by further delineating the AGE and advanced lipoxidation end product (ALE) precursors targeted by this drug. The inhibitory effects of OPB-9195 on the formation of two AGE (N:epsilon-carboxymethyllysine and pentosidine) on bovine serum albumin incubated with various AGE precursors were examined. Inhibition of N:epsilon-carboxymethyllysine and pentosidine formation with OPB-9195 was more efficient than with aminoguanidine. OPB-9195 also proved effective in blocking the carbonyl amine chemical processes involved in the formation of two ALE (malondialdehyde-lysine and 4-hydroxynonenal-protein adduct). The efficiency of OPB-9195 was similar to that of aminoguanidine. When glucose-based peritoneal dialysis fluid was incubated in the presence of OPB-9195, a similar inhibition of AGE formation was observed. The direct effect of OPB-9195 on major glucose-derived RCO in peritoneal dialysis fluids was then evaluated. The effects of OPB-9195 could be accounted for by its ability to trap RCO. The concentrations of three major glucose-derived RCO (glyoxal, methylglyoxal, and 3-deoxy-glucosone) were significantly lower in the presence of OPB-9195 than in its absence. Aminoguanidine had a similar effect. In conclusion, OPB-9195 inhibits both AGE and ALE formation, probably through its ability to trap RCO. OPB-9195 might prove to be a useful tool to inhibit some of the effects of RCO-related uremic toxicity.  (+info)

Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. (8/327)

A full-length lipoxygenase cDNA (RCI-1) has been cloned from rice (Oryza sativa) whose corresponding transcripts accumulate in response to treatment of the plants with chemical inducers of acquired resistance such as benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA), and probenazole. In contrast, RCI-1 transcript levels did not increase after inoculation with compatible and incompatible races of the rice blast fungus Magnaporthe grisea and the nonhost pathogen Pseudomonas syringae pv. syringae. RCI-1 transcript levels also increased after exogenous application of jasmonic acid, but not upon wounding. Dose-response and time course experiments revealed a similar pattern of transcript accumulation and lipoxygenase activity in BTH-treated rice leaves. Enzymatic analysis of recombinant RCI-1 protein produced in Escherichia coli revealed that 13-hydroperoxy-octadecanoic acids were the predominant reaction products when either linoleic or linolenic acid used as a substrate. The RCI-1 sequence features a putative chloroplast targeting sequence at its N-terminus. Indeed, a protein consisting of the putative chloroplast transit peptide fused to green fluorescent protein was exclusively localized in chloroplasts, indicating that RCI-1 is a chloroplastic enzyme.  (+info)