Loading...
(1/16154) A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 degrees C and in ileum at 29 degrees C and 37 degrees C.

1 The affinity of 17 compounds for muscarine-sensitive acetylcholine receptors in atrial pacemaker cells and ileum of the guinea-pig has been measured at 29 degrees C in Ringer-Locke solution. Measurements were also made at 37 degrees C with 7 of them. 2 Some of the compounds had much higher affinity for the receptors in the ileum than for those in the atria. For the most selective compound, 4-diphenylacetoxy-N-methylpiperidine methiodide, the difference was approximately 20-fold. The receptors in the atria are therefore different the structure from those in the ileum. 3 The effect of temperature on affinity are not the same for all the compounds, tested indicating different enthalpies and entropies of adsorption and accounting for some of the difficulty experienced in predicting the affinity of new compounds.  (+info)

(2/16154) A processive single-headed motor: kinesin superfamily protein KIF1A.

A single kinesin molecule can move "processively" along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the "walking model," which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to "walk" and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.  (+info)

(3/16154) Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding.

The effects of pH and ligand binding on the stability of abrin II, a heterodimeric ribosome-inactivating protein, and its subunits have been studied using high-sensitivity differential scanning calorimetry. At pH7.2, the calorimetric scan consists of two transitions, which correspond to the B-subunit [transition temperature (Tm) 319.2K] and the A-subunit (Tm 324.6K) of abrin II, as also confirmed by studies on the isolated A-subunit. The calorimetric enthalpy of the isolated A-subunit of abrin II is similar to that of the higher-temperature transition. However, its Tm is 2.4K lower than that of the higher-temperature peak of intact abrin II. This indicates that there is some interaction between the two subunits. Abrin II displays increased stability as the pH is decreased to 4.5. Lactose increases the Tm values as well as the enthalpies of both transitions. This effect is more pronounced at pH7.2 than at pH4.5. This suggests that ligand binding stabilizes the native conformation of abrin II. Analysis of the B-subunit transition temperature as a function of lactose concentration suggests that two lactose molecules bind to one molecule of abrin II at pH7.2. The presence of two binding sites for lactose on the abrin II molecule is also indicated by isothermal titration calorimetry. Plotting DeltaHm (the molar transition enthalpy at Tm) against Tm yielded values for DeltaCp (change in excess heat capacity) of 27+/-2 kJ.mol-1.K-1 for the B-subunit and 20+/-1 kJ.mol-1.K-1 for the A-subunit. These values have been used to calculate the thermal stability of abrin II and to surmise the mechanism of its transmembrane translocation.  (+info)

(4/16154) Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions.

Insulin-like growth factor (IGF) I does not quantitatively form its three native disulfide bonds in the presence of 10 mM reduced and 1 mM oxidized glutathione in vitro [Hober, S. et al. (1992) Biochemistry 31, 1749-1756]. In this paper, we show (i) that both IGF-I and IGF-II are unable to form and maintain their native disulfide bonds at redox conditions that are similar to the situation in the secretory vesicles in vivo and (ii) that the presence of protein disulfide isomerase does not overcome this problem. The results indicate that the previously described thermodynamic disulfide exchange folding problem of IGF-I in vitro is also present in vivo. Speculatively, we suggest that the thermodynamic disulfide exchange properties of IGF-I and II are biologically significant for inactivation of the unbound growth factors by disulfide exchange reactions to generate variants destined for rapid clearance.  (+info)

(5/16154) Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin.

The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  (+info)

(6/16154) Phosphotyrosine binding domains of Shc and insulin receptor substrate 1 recognize the NPXpY motif in a thermodynamically distinct manner.

Phosphotyrosine binding (PTB) domains of the adaptor protein Shc and insulin receptor substrate (IRS-1) interact with a distinct set of activated and tyrosine-phosphorylated cytokine and growth factor receptors and play important roles in mediating mitogenic signal transduction. By using the technique of isothermal titration calorimetry, we have studied the thermodynamics of binding of the Shc and IRS-1 PTB domains to tyrosine-phosphorylated NPXY-containing peptides derived from known receptor binding sites. The results showed that relative contributions of enthalpy and entropy to the free energy of binding are dependent on specific phosphopeptides. Binding of the Shc PTB domain to tyrosine-phosphorylated peptides from TrkA, epidermal growth factor, ErbB3, and insulin receptors is achieved via an overall entropy-driven reaction. On the other hand, recognition of the phosphopeptides of insulin and interleukin-4 receptors by the IRS-1 PTB domain is predominantly an enthalpy-driven process. Mutagenesis and amino acid substitution experiments showed that in addition to the tyrosine-phosphorylated NPXY motif, the PTB domains of Shc and IRS-1 prefer a large hydrophobic residue at pY-5 and a small hydrophobic residue at pY-1, respectively (where pY is phosphotyrosine). These results agree with the calculated solvent accessibility of these two key peptide residues in the PTB domain/peptide structures and support the notion that the PTB domains of Shc and IRS-1 employ functionally distinct mechanisms to recognize tyrosine-phosphorylated receptors.  (+info)

(7/16154) Poly(L-lysine)-graft-dextran copolymer promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies.

Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use for artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is therefore of great importance in improving its therapeutic potential. To this end, isothermal titration calorimetry interaction analysis system and electrophoretic mobility shift assay have been used to explore the thermodynamic and kinetic effects of our previously reported triplex stabilizer, poly (L-lysine)-graft-dextran (PLL-g-Dex) copolymer, on pyrimidine motif triplex formation at physiological pH. Both the thermodynamic and kinetic analyses have clearly indicated that in the presence of the PLL-g-Dex copolymer, the binding constant of the pyrimidine motif triplex formation at physiological pH was about 100 times higher than that observed without any triplex stabilizer. Of importance, the triplex-promoting efficiency of the copolymer was more than 20 times higher than that of physiological concentrations of spermine, a putative intracellular triplex stabilizer. Kinetic data have also demonstrated that the observed copolymer-mediated promotion of the triplex formation at physiological pH resulted from the considerable increase in the association rate constant rather than the decrease in the dissociation rate constant. Our results certainly support the idea that the PLL-g-Dex copolymer could be a key material and may eventually lead to progress in therapeutic applications of the antigene strategy in vivo.  (+info)

(8/16154) Filament assembly from profilin-actin.

Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  (+info)