Inhibitory innervation of cat sphincter of Oddi. (1/3732)

1 Electrical stimulation with trains of 0.1-0.2 ms pulses of the cat isolated sphincter of Oddi inhibited the spontaneous contractile activity and lowered base-line tension considerably. A contraction usually followed the period of stimulation. 2 These inhibitory effects were prevented by tetrodotoxin 0.1-0.5 mug/ml but were not reduced by hexamethonilm, morphine, or blockade of alpha- or beta-adrenoreceptors of cholinoceptors with phenoxy-benzamine propranolol or atropine, respectively. 3 Adenosine-5'-triphosphate (ATP) and adenosine-5'-diphosphate (ADP) inhibited the spontaneous sphincter activity and caused relaxation thus mimicking the effects of the C-terminal octapeptide of cholecystokinin (C8-CCK), isoprenaline and prostaglandin E1 and E2. 4 ATP alone (greater than 100 mug/ml) or ATP (greater than 10 mug/ml) plus dipyridamole (1 mug/ml), relaxed the sphincter to the same degrees as did the field stimulation. 5 In sphincter maximally contracted by acetylcholine, the effect of stimulation was more marked than that recorded in uncontracted preparations. 6 The present findings suggest that the sphincter of Oddi receives inhibitory nerves that are neither cholinergic nor adrenergic.  (+info)

Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. (2/3732)

Using in situ patch-clamp techniques in rat telencephalic slices, we have followed resting potential (RP) properties and the functional expression of NMDA receptors in neocortical Cajal-Retzius (CR) cells from embryonic day 18 to postnatal day 13, the time around which these cells normally disappear. We find that throughout their lives CR cells have a relatively depolarized RP (approximately -50 mV), which can be made more hyperpolarized (approximately -70 mV) by stimulation of the Na/K pump with intracellular ATP. The NMDA receptors of CR cells are subjected to intense postnatal upregulation, but their similar properties (EC50, Hill number, sensitivity to antagonists, conductance, and kinetics) throughout development suggest that their subunit composition remains relatively homogeneous. The low RP of CR cells is within a range that allows for the relief of NMDA channels from Mg2+ blockade. Our findings are consistent with the hypothesis that CR cells may degenerate and die subsequent to uncontrolled overload of intracellular Ca2+ via NMDA receptor activation by ambient glutamate. In support of this hypothesis we have obtained evidence showing the protection of CR cells via in vivo blockade of NMDA receptors with dizocilpine.  (+info)

Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. (3/3732)

Acutely dissociated cell bodies of mouse Purkinje neurons spontaneously fired action potentials at approximately 50 Hz (25 degrees C). To directly measure the ionic currents underlying spontaneous activity, we voltage-clamped the cells using prerecorded spontaneous action potentials (spike trains) as voltage commands and used ionic substitution and selective blockers to isolate individual currents. The largest current flowing during the interspike interval was tetrodotoxin-sensitive sodium current (approximately -50 pA between -65 and -60 mV). Although the neurons had large voltage-dependent calcium currents, the net current blocked by cobalt substitution for calcium was outward at all times during spike trains. Thus, the electrical effect of calcium current is apparently dominated by rapidly activated calcium-dependent potassium currents. Under current clamp, all cells continued firing spontaneously (though approximately 30% more slowly) after block of T-type calcium current by mibefradil, and most cells continued to fire after block of all calcium current by cobalt substitution. Although the neurons possessed hyperpolarization-activated cation current (Ih), little current flowed during spike trains, and block by 1 mM cesium had no effect on firing frequency. The outward potassium currents underlying the repolarization of the spikes were completely blocked by 1 mM TEA. These currents deactivated quickly (<1 msec) after each spike. We conclude that the spontaneous firing of Purkinje neuron cell bodies depends mainly on tetrodotoxin-sensitive sodium current flowing between spikes. The high firing rate is promoted by large potassium currents that repolarize the cell rapidly and deactivate quickly, thus preventing strong hyperpolarization and restoring a high input resistance for subsequent depolarization.  (+info)

Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers. (4/3732)

A tetrodotoxin (TTX)-resistant sodium channel was recently identified that is expressed only in small diameter neurons of peripheral sensory ganglia. The peripheral axons of sensory neurons appear to lack this channel, but its presence has not been investigated in peripheral nerve endings, the site of sensory transduction in vivo. We investigated the effect of TTX on mechanoresponsiveness in nerve endings of sensory neurons that innervate the intracranial dura. Because the degree of TTX resistance of axonal branches could potentially be affected by factors other than channel subtype, the neurons were also tested for sensitivity to lidocaine, which blocks both TTX-sensitive and TTX-resistant sodium channels. Single-unit activity was recorded from dural afferent neurons in the trigeminal ganglion of urethan-anesthetized rats. Response thresholds to mechanical stimulation of the dura were determined with von Frey monofilaments while exposing the dura to progressively increasing concentrations of TTX or lidocaine. Neurons with slowly conducting axons were relatively resistant to TTX. Application of 1 microM TTX produced complete suppression of mechanoresponsiveness in all (11/11) fast A-delta units [conduction velocity (c.v.) 5-18 m/s] but only 50% (5/10) of slow A-delta units (1.5 +info)

An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. (5/3732)

By using the whole cell patch recording technique in vitro, we examined the voltage-dependent firing patterns of 69 interneurons in the rat dorsal lateral geniculate nucleus (LGN). When held at a hyperpolarized membrane potential, all interneurons responded with a burst of action potentials. In 48 interneurons, larger current pulses produced a bursting oscillation. When relatively depolarized, some interneurons produced a tonic train of action potentials in response to a depolarizing current pulse. However, most interneurons produced only oscillations, regardless of polarization level. The oscillation was insensitive to the bath application of a combination of blockers to excitatory and inhibitory synaptic transmission, including 30 microM 6,7-dinitroquinoxaline-2,3-dione, 100 microM (+/-)-2-amino-5-phosphonopentanoic acid, 20 microM bicuculline, and 2 mM saclofen, suggesting an intrinsic event. The frequency of the oscillation in interneurons was dependent on the intensity of the injection current. Increasing current intensity increased the oscillation frequency. The maximal frequency of the oscillation was 5-15 Hz for most cells, with some ambiguity caused by the difficulty of precisely defining a transition from oscillatory to regular firing behavior. In contrast, the interneuron oscillation was little affected by preceding depolarizing and hyperpolarizing pulses. In addition to being elicited by depolarizing current injections, the oscillation could also be initiated by electrical stimulation of the optic tract when the interneurons were held at a depolarized membrane potential. This suggests that interneurons may be recruited into thalamic oscillations by synaptic inputs. These results indicate that interneurons may play a larger role in thalamic oscillations than was previously thought.  (+info)

Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. (6/3732)

Visual activity is thought to be a critical factor in controlling the development of central retinal projections. Neuronal activity increases cytosolic calcium, which was hypothesized to regulate process outgrowth in neurons. We performed an in vivo imaging study in the retinotectal system of albino Xenopus laevis tadpoles with the fluorescent calcium indicator calcium green 1 dextran (CaGD) to test the role of calcium in regulating axon arbor development. We find that visual stimulus to the retina increased CaGD fluorescence intensity in retinal ganglion cell (RGC) axon arbors within the optic tectum and that branch additions to retinotectal axon arbors correlated with a local rise in calcium in the parent branch. We find three types of responses to visual stimulus, which roughly correlate with the ON, OFF, and SUSTAINED response types of RGC reported by physiological criteria. Imaging in bandscan mode indicated that patterns of calcium transients were nonuniform throughout the axons. We tested whether the increase in calcium in the retinotectal axons required synaptic activity in the retina; intraocular application of tetrodotoxin (10 microM) or nifedipine (1 and 10 microM) blocked the stimulus-induced increase in RGC axonal fluorescence. A second series of pharmacological investigations was designed to determine the mechanism of the calcium elevation in the axon terminals within the optic tectum. Injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) (20 mM) into the tectal ventricle reduced axonal calcium levels, supporting the idea that visual stimulation increases axonal calcium. Injection of BAPTA (20 mM) into the tectal ventricle to chelate extracellular calcium also attenuated the calcium response to visual stimulation, indicating that calcium enters the axon from the extracellular medium. Caffeine (10 mM) caused a large increase in axonal calcium, indicating that intracellular stores contribute to the calcium signal. Presynaptic nicotinic acetylcholine receptors (nAChRs) may play a role in axon arbor development and the formation of the topographic retinotectal projection. Injection of nicotine (10 microM) into the tectal ventricle significantly elevated RGC axonal calcium levels, whereas application of the nAChR antagonist alphaBTX (100 nM) reduced the stimulus-evoked rise in RGC calcium fluorescence. These data suggest that light stimulus to the retina increases calcium in the axon terminal arbors through a mechanism that includes influx through nAChRs and amplification by calcium-induced calcium release from intracellular calcium stores. Such a mechanism may contribute to developmental plasticity of the retinotectal system by influencing both axon arbor elaboration and the strength of synaptic transmission.  (+info)

Three-independent-compartment chamber to study in vitro commissural synapses. (7/3732)

We describe a novel chamber in which the two intact neonatal rat hippocampi and the commissural fibers are placed in three independent compartments separated by latex membranes and perfused selectively with different solutions. A set of control tests showed that the compartments are well isolated: 1) methylene blue or eosin applied to one compartment did not diffuse to other compartments when verified via the microscope, and spectrophotometry revealed that <1/10.000th of the dye diffuses to other compartments; 2) tetrodotoxin (1 microM) applied to the commissural compartment blocked the synaptic responses evoked contralaterally without affecting those evoked on the ipsilateral side. This chamber enables a wide range of experiments that cannot be performed in conventional chambers, e.g., to study the maturation and plasticity of the commissural connections, bilateral synchronization of the rhythmic activities in the limbic system, commissural propagation of the epileptiform activities, etc.  (+info)

Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord. (8/3732)

1. The metabotropic glutamate receptor (mGluR) agonist trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-ACPD) (10-100 microM) depolarized isolated frog spinal cord motoneurones, a process sensitive to kynurenate (1.0 mM) and tetrodotoxin (TTX) (0.783 microM). 2. In the presence of NMDA open channel blockers [Mg2+; (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK801); 3,5-dimethyl-1-adamantanamine hydrochloride (memantine)] and TTX, trans-ACPD significantly potentiated NMDA-induced motoneurone depolarizations, but not alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA)- or kainate-induced depolarizations. 3. NMDA potentiation was blocked by (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (240 microM), but not by alpha-methyl-(2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (MCCG) (290 microM) or by alpha-methyl-(S)-2-amino-4-phosphonobutyrate (L-MAP4) (250 microM), and was mimicked by 3,5-dihydroxyphenylglycine (DHPG) (30 microM), but not by L(+)-2-amino-4-phosphonobutyrate (L-AP4) (100 microM). Therefore, trans-ACPD's facilitatory effects appear to involve group I mGluRs. 4. Potentiation was prevented by the G-protein decoupling agent pertussis toxin (3-6 ng ml(-1), 36 h preincubation). The protein kinase C inhibitors staurosporine (2.0 microM) and N-(2-aminoethyl)-5-isoquinolinesulphonamide HCI (H9) (77 microM) did not significantly reduce enhanced NMDA responses. Protein kinase C activation with phorbol-12-myristate 13-acetate (5.0 microM) had no effect. 5. Intracellular Ca2+ depletion with thapsigargin (0.1 microM) (which inhibits Ca2+/ATPase), 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetracetic acid acetyl methyl ester (BAPTA-AM) (50 microM) (which buffers elevations of [Ca2+]i), and bathing spinal cords in nominally Ca2+-free medium all reduced trans-ACPD's effects. 6. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) (100 microM) and chlorpromazine (100 microM) diminished the potentiation. 7. In summary, group I mGluRs selectively facilitate NMDA-depolarization of frog motoneurones via a G-protein, a rise in [Ca2+]i from the presumed generation of phosphoinositides, binding of Ca2+ to calmodulin, and lessening of the Mg2+-produced channel block of the NMDA receptor.  (+info)