Electrogenicity of the Na+-ATPase from the marine microalga Tetraselmis (Platymonas) viridis and associated H+ countertransport. (1/53)

Sodium accumulation by the Na+-ATPase in the plasma membrane (PM) vesicles isolated from the marine alga Tetraselmis (Platymonas) viridis was shown to be accompanied by deltapsi generation across the vesicle membrane (positive inside) and H+ efflux from the vesicle lumen. Na+ accumulation was assayed with 22Na+; deltapsi generation was detected by recording absorption changes of oxonol VI; H+ efflux was monitored as an increase in fluorescence intensity of the pH indicator pyranine loaded into the vesicles. Both ATP-dependent Na+ uptake and H+ ejection were increased by the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CICCP) while deltapsi was collapsed. The lipophilic anion tetraphenylboron ion (TPB-) inhibited H+ ejection from the vesicles and abolished deltapsi. Based on the effects of CICCP and TPB- on H+ ejection and deltapsi generation, the conclusion was drawn that H+ countertransport observed during Na+-ATPase operation is a secondary event energized by the electric potential which is generated in the course of Na+ translocation across the vesicle membrane. Increasing Na+ concentrations stimulated H+ efflux and caused the decrease in the deltapsi observed, thus indicating that Na+ is likely a factor controlling H+ permeability of the vesicle membrane.  (+info)

Annexins V and XII alter the properties of planar lipid bilayers seen by conductance probes. (2/53)

Annexins are proteins that bind lipids in the presence of calcium. Though multiple functions have been proposed for annexins, there is no general agreement on what annexins do or how they do it. We have used the well-studied conductance probes nonactin, alamethicin, and tetraphenylborate to investigate how annexins alter the functional properties of planar lipid bilayers. We found that annexin XII reduces the nonactin-induced conductance to approximately 30% of its original value. Both negative lipid and approximately 30 microM Ca(2+) are required for the conductance reduction. The mutant annexin XIIs, E105K and E105K/K68A, do not reduce the nonactin conductance even though both bind to the membrane just as wild-type does. Thus, subtle changes in the interaction of annexins with the membrane seem to be important. Annexin V also reduces nonactin conductance in nearly the same manner as annexin XII. Pronase in the absence of annexin had no effect on the nonactin conductance. But when added to the side of the bilayer opposite that to which annexin was added, pronase increased the nonactin-induced conductance toward its pre-annexin value. Annexins also dramatically alter the conductance induced by a radically different probe, alamethicin. When added to the same side of the bilayer as alamethicin, annexin has virtually no effect, but when added trans to the alamethicin, annexin dramatically reduces the asymmetry of the I-V curve and greatly slows the kinetics of one branch of the curve without altering those of the other. Annexin also reduces the rate at which the hydrophobic anion, tetraphenylborate, crosses the bilayer. These results suggest that annexin greatly reduces the ability of small molecules to cross the membrane without altering the surface potential and that at least some fraction of the active annexin is accessible to pronase digestion from the opposite side of the membrane.  (+info)

Effect of ethylene oxide and propylene oxide block copolymers on the permeability of bilayer lipid membranes to small solutes including doxorubicin. (3/53)

The effects of ethylene oxide and propylene oxide block copolymers (pluronics) on the permeability of several weak acids and bases through bilayer lipid membranes have been studied by the methods of monitoring (1) pH shifts near planar bilayers, (2) doxorubicin fluorescence quenching inside liposomes, and (3) current transients in the presence of hydrophobic anions. It has been shown that pluronics facilitate the permeation of comparatively large molecules (such as 2-n-undecylmalonic acid and doxorubicin) across lipid bilayers, while the permeation of small solutes (such as ammonium and acetic acid) remains unaffected. Pluronics also accelerate the translocation of large hydrophobic anions (tetraphenylborate). The effect of pluronics correlates with the content of propylene oxide units: it is enhanced when the portion of polypropylene oxide block in the copolymer is increased. The action of the pluronic on lipid membrane permeability differs from the effect of the conventional detergent Triton X-100, which does not affect doxorubicin transport if added at concentrations similar to those used for pluronics. It has been proposed that pluronics accelerate the processes of solute diffusion within lipid bilayers (in a structure-dependent manner) rather than influencing the rate of solute adsorption/desorption on the membrane surface. We suppose that the effect of pluronics on doxorubicin permeation across lipid bilayers along with the known effect on the multidrug resistance protein determines its influence on the therapeutic activity of anthracycline drugs.  (+info)

Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. (4/53)

Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier.  (+info)

Flame atomic absorption spectrometric determination of trace amounts of manganese in alloys and biological samples after preconcentration with the ion pair of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and ammonium tetraphenylborate on microcrystalline naphthalene or by column method. (5/53)

Manganese is quantitatively retained on 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-ammonium tetraphenylborate with microcrystalline naphthalene or by a column method in the pH range 7.5-10.5 from large volumes of aqueous solutions of various samples. After filtration, each solid mass consisting of the manganese complex and naphthalene was dissolved with 5 ml of dimethylformamide and the metal was determined by flame atomic absorption spectrometry. Manganese complex can alternatively be quantitatively adsorbed on ammonium tetraphenylborate-naphthalene adsorbent packed in a column and determined similarly. About 0.1 microgram of manganese can be concentrated in a column from 500 ml of aqueous sample, where its concentration is as low as 0.2 ppb. Eight replicate determinations of 1.0 ppm of manganese gave a mean absorbance of 0.224 with a relative standard deviation of 1.8%. The sensitivity for 1% absorption was 19 ppb. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of manganese in various standard samples.  (+info)

Hydrophobic ion hydration and the magnitude of the dipole potential. (6/53)

The magnitude of the dipole potential of lipid membranes is often estimated from the difference in conductance between the hydrophobic ions, tetraphenylborate, and tetraphenylarsonium or tetraphenylphosphonium. The calculation is based on the tetraphenylarsonium-tetraphenylborate hypothesis that the magnitude of the hydration energies of the anions and cations are equal (i.e., charge independent), so that their different rates of transport across the membrane are solely due to differential interactions with the membrane phase. Here we investigate the validity of this assumption by quantum mechanical calculations of the hydration energies. Tetraphenylborate (Delta G(hydr) = -168 kJ mol(-1)) was found to have a significantly stronger interaction with water than either tetraphenylarsonium (Delta G(hydr) = -145 kJ mol(-1)) or tetraphenylphosphonium (Delta G(hydr) = -157 kJ mol(-1)). Taking these differences into account, literature conductance data were recalculated to yield values of the dipole potential 57 to 119 mV more positive in the membrane interior than previous estimates. This may partly account for the discrepancy of at least 100 mV generally observed between dipole potential values calculated from lipid monolayers and those determined on bilayers.  (+info)

A sensitive optode membrane for berberine using conjugated polymer as sensing material. (7/53)

A new optode membrane for the sensitive determination of berberine based on fluorescence quenching of a conjugated polymer, poly(2,5-dimethoxy-phenyldiacetylene) (PDPA), is proposed. Incorporated in a membrane composed of plasticized poly(vinyl chloride) (PVC), the conjugated polymer exhibits better stability than those small sensing molecules regarding its excellent optical properties and lipophilic characteristics. Moreover, upon the introduction of a negatively charged lipophilic additive (tetraphenylborate salt) into a PVC membrane, the optode displayed enhanced sensitivity. In addition, satisfactory analytical sensing characteristics for determining beberine were obtained in terms of the selectivity, reversibility and reproducibility with a detecting range of between 7.5 x 10(-7) mol l(-1) and 7.5 x 10(-4) mol l(-1). The optode membrane has been applied to determine berberine in commercial tablets. The results showed a good agreement with those obtained by the pharmacopoeial method.  (+info)

Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode. (8/53)

The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes selective destruction of nigrostriatal dopaminergic neurons in primates, giving rise to a condition resembling Parkinson's disease. The toxicity of MPTP is believed to be due to its metabolite 1-methyl-4-phenylpyridinium (MPP+). MPP+ is an inhibitor of mitochondrial respiration at the NADH-ubiquinone oxidoreductase site and this, together with its selective transport into dopaminergic nerve terminals, accounts for its neurotoxicity. In this paper an electrode selective for MPP+ was developed and used to measure the rate of uptake and the steady-state accumulation of MPP+ in rat liver mitochondria. The initial rates of MPP+ uptake were not saturable, confirming previous work that the transport of MPP+ is not carrier-mediated. The membrane potential of mitochondria respiring on succinate was decreased by MPP+ and the steady-state accumulation ratio of MPP+ did not come to equilibrium with the mitochondrial transmembrane potential gradient (delta psi). The effect of the cation exchanger tetraphenylboron (5 microM) was to increase the initial rate of MPP+ uptake by about 20-fold and the steady-state accumulation by about 2-fold. This suggests that there may be a mechanism of efflux of MPP+ from mitochondria which allows MPP+ to cycle across the membrane and thus decrease delta psi. These data indicate that MPP+ interacts with mitochondria independently of its inhibition of NADH-ubiquinone oxidoreductase, and these alternative interactions may be of relevance for its mechanism of neurotoxicity.  (+info)