Four natriuretic peptides (ANP, BNP, VNP and CNP) coexist in the sturgeon: identification of BNP in fish lineage. (33/144)

The natriuretic peptide (NP) family is composed of three members: atrial, brain/ventricular and C-type NPs (ANP, BNP/VNP and CNP respectively) in tetrapods and teleostean fish, but only CNP in elasmobranch fish. In order to trace the process of divergence of the NP family in early vertebrate evolution, we attempted to detect NPs in the primitive ray-finned fish, the sturgeon (Acipenser transmontanus). Unexpectedly, we isolated four distinct NP cDNAs from the heart and brain of this chondrostean fish. The single NP from the brain was CNP, as judged from the lack of C-terminal 'tail' sequence extending from the intramolecular ring. Two of the three cardiac NPs were ANP and VNP, as judged by the presence of an amidation signal at its C-terminus (ANP) and a long and conserved C-terminal tail sequence (VNP) respectively. The third cardiac NP was most probably BNP because it possessed all the features characteristic of BNP including: (1) the presence of dibasic amino acids within the intramolecular ring; (2) the presence of AUUUA repeats in the 3'-untranslated region of its mRNA; (3) equivalent expression of its mRNA in the atrium and ventricle and appreciable expression in the brain. Based on the sturgeon BNP sequence, we further isolated BNP cDNA from the heart of tilapia and pufferfish for the first time in teleostean fish. Phylogenetic analysis of the precursors showed that newly identified NPs belong to each group of the four NPs. The current identification of both VNP and BNP in the sturgeon clearly showed that BNP and VNP are coded by distinct genes, and that the NP family consists of at least four members in the ray-finned fish. VNP has not been molecularly identified in mammals but its presence is suggested from physiological studies; heterologous fish VNP exhibited more potent vasorelaxant activity than homologous mammalian ANP in the isolated coronary artery of dogs.  (+info)

Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression. (34/144)

BACKGROUND: Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF) gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. RESULTS: Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1) present in 5' exon 1c in a dehancer-like manner. CONCLUSIONS: The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.  (+info)

Plenty more fish in the sea: comparative and functional genomics using teleost models. (35/144)

Biology has collaborated with evolution to create an enormous repertoire of animal variation. This in turn has provided experimental biologists with models that can be used in the lab to simulate more complex systems. Amongst the organisms that have been used in this way are fish, where a large number of species have been utilised in a variety of different ways. Fish possess the smallest genomes of any vertebrate, making them ideal as models for genome analysis and gene discovery. Fish are also easy to maintain in a laboratory environment and can be bred easily. Fish often have well-defined physiology and respond well to many experimental procedures. Finally, fish are of great economic importance in their own right, as one of the world's largest sources of protein. In this review, the relationship between fish species is examined along with the role of different fish models in a wide range of biological disciplines.  (+info)

A comparative view on sex determination in medaka. (36/144)

In fish, an amazing variety of sex determination mechanisms are known, ranging from hermaphroditism to gonochorism and from environmental to genetic sex determination. This makes fish especially suited for studying sex determination from the evolutionary point of view. In several fish groups, different sex determination mechanisms are found in closely related species, and evolution of this process is still ongoing in recent organisms. The medaka (Oryzias latipes) has an XY-XX genetic sex determination system. The Y-chromosome in this species is at an early stage of evolution. The molecular differences between X and Y are only very subtle and the Y-specific segment is very small. The sex-determining region has accumulated duplicated sequences from elsewhere in the genome, leading to recombinational isolation. The region contains a candidate for the male sex-determining gene named dmrt1bY. This gene arose through duplication of an autosomal chromosome fragment of linkage group 9. While all other genes degenerated, dmrt1bY is the only functional gene in the Y-specific region. The duplication leading to dmrt1bY occurred recently during evolution of the genus Oryzias. This suggests that different genes might be the master sex-determining gene in other fish.  (+info)

RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. (37/144)

A typical gene contains two levels of information: a sequence that encodes a particular protein and a host of other signals that are necessary for the correct expression of the transcript. While much attention has been focused on the effects of sequence variation on the amino acid sequence, variations that disrupt gene processing signals can dramatically impact gene function. A variation that disrupts an exonic splicing enhancer (ESE), for example, could cause exon skipping which would result in the exclusion of an entire exon from the mRNA transcript. RESCUE-ESE, a computational approach used in conjunction with experimental validation, previously identified 238 candidate ESE hexamers in human genes. The RESCUE-ESE method has recently been implemented in three additional species: mouse, zebrafish and pufferfish. Here we describe an online ESE analysis tool (http://genes.mit.edu/burgelab/rescue-ese/) that annotates RESCUE-ESE hexamers in vertebrate exons and can be used to predict splicing phenotypes by identifying sequence changes that disrupt or alter predicted ESEs.  (+info)

Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitflies. (38/144)

Comparative analysis of recently sequenced eukaryotic genomes has uncovered extensive variation in transposable element (TE) abundance, diversity, and distribution. The TE profile in the sequenced pufferfish genomes is more similar to that of Drosophila melanogaster than to human or mouse, in that pufferfish TEs exhibit low overall abundance, high family diversity, and localization in the heterochromatin. It has been suggested that selection against the deleterious effects of ectopic recombination between TEs has structured the TE profile in Drosophila and pufferfish but not in humans. We test this hypothesis by measuring the sample frequency of 48 euchromatic TE insertions in the genome of the green spotted pufferfish (Tetraodon nigroviridis). We estimate the strength of selection acting on recent insertions by analyzing the site frequency spectrum using a maximum-likelihood approach. We show that in contrast to Drosophila, euchromatic TE insertions in Tetraodon are selectively neutral and that the low copy number and compartmentalized distribution of TEs in the Tetraodon genome must be caused by regulation by means other than purifying selection acting on recent insertions. Inference of regulatory processes governing TE profiles should take into account factors such as effective population size, incidence of inbreeding/outcrossing, and other species-specific traits.  (+info)

Variation in sequence and organization of splicing regulatory elements in vertebrate genes. (39/144)

Although core mechanisms and machinery of premRNA splicing are conserved from yeast to human, the details of intron recognition often differ, even between closely related organisms. For example, genes from the pufferfish Fugu rubripes generally contain one or more introns that are not properly spliced in mouse cells. Exploiting available genome sequence data, a battery of sequence analysis techniques was used to reach several conclusions about the organization and evolution of splicing regulatory elements in vertebrate genes. The classical splice site and putative branch site signals are completely conserved across the vertebrates studied (human, mouse, pufferfish, and zebrafish), and exonic splicing enhancers also appear broadly conserved in vertebrates. However, another class of splicing regulatory elements, the intronic splicing enhancers, appears to differ substantially between mammals and fish, with G triples (GGG) very abundant in mammalian introns but comparatively rare in fish. Conversely, short repeats of AC and GT are predicted to function as intronic splicing enhancers in fish but are not enriched in mammalian introns. Consistent with this pattern, exonic splicing enhancer-binding SR proteins are highly conserved across all vertebrates, whereas heterogeneous nuclear ribonucleoproteins, which bind many intronic sequences, vary in domain structure and even presence/absence between mammals and fish. Exploiting differences in intronic sequence composition, a statistical model was developed to predict the splicing phenotype of Fugu introns in mammalian systems and was used to engineer the spliceability of a Fugu intron in human cells by insertion of specific sequences, thereby rescuing splicing in human cells.  (+info)

An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. (40/144)

BACKGROUND: The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family), but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. RESULTS: Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes) reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. CONCLUSIONS: Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.  (+info)