A novel cGMP-regulated K+ channel in immortalized human kidney epitheliall cells (IHKE-1). (9/952)

1. K+ channels from the apical membrane of immortalized human kidney epithelial (IHKE-1) cells were investigated in the cell-attached membrane configuration as well as in excised membranes using the patch clamp technique. 2. In cell-attached membrane patches the open probability (Po) of the K+ channel was 0.42 +/- 0.06 (mean +/- s.e.m. , n = 22) and its conductance was 94 +/- 5 pS with 145 mM K+ in the pipette (n = 25). In excised membrane patches the Po of the channel was 0.55 +/- 0.03 (n = 86) and its conductance was 65 +/- 2 pS (n = 68) with 145 mM K+ on one side of the membrane and 3.6 mM K+ on the other. The I-V curve of the K+ channel was not rectifying. 3. The channel was inhibited by several blockers of K+ channels such as 1 mM Ba2+ (cell-attached membrane: 78 +/- 8 %, n = 9; excised: 80 +/- 4 %, n = 26), 10 mM TEA+ (excised inside-out: 48 +/- 5 %, n = 34; excised outside-out: 100 +/- 0 %, n = 26), 0.1 mM verapamil (excised: 73 +/- 9 %, n = 12), and 10 nM charybdotoxin (excised outside-out: 67 +/- 9 %, n = 9). 4. The K+ channel was activated by depolarization and rising cytosolic Ca2+. Half-maximal activity occurred at a cytosolic Ca2+ concentration of 200 nM. In the cell-attached membrane configuration the K+ channel was inhibited in a concentration-dependent manner by atrial natriuretic peptide (ANP). Powas blocked equally well by 10 nM ANP (52 +/- 7 %, n = 10), brain natriuretic peptide (BNP; 37 +/- 11 %, n = 6) and C-type natriuretic peptide (CNP; 44 +/- 13 %, n = 8). 8-Bromoguanosine 3',5' cyclic monophosphate (8-Br-cGMP, 0.1 mM) also inhibited Poof this K+ channel, by 70 +/- 10 % (n = 5). 5. In excised membrane patches cGMP inhibited Po of this K+ channel in a concentration-dependent manner. The first significant effects were measured at a concentration of 1 microM (22 +/- 7 %, n = 6), and greatest effects were obtained at 0.1 mM (34 +/- 5 %, n = 15). cAMP (0.1 mM, n = 5) as well as GTP (0.1 mM, n = 5) had no significant effects on Po of this K+ channel. ATP (0.1 mM) had a weak inhibitory effect (17 +/- 5 %, n = 14). Addition of Mg-ATP to cGMP did not increase the inhibitory effect (30 +/- 4 %, n = 14). KT5823 (1 microM), a specific inhibitor of cGMP-dependent protein kinases, did not significantly alter the cGMP-induced reduction in Po of the K+ channel in three excised membrane patches. 6. The results present the first electrophysiological characterization of a mammalian K+ channel that is directly regulated by cGMP.  (+info)

Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. (10/952)

1. Mice lacking the apolipoprotein E and low density lipoprotein receptor genes (E degrees xLDLR degrees ) develop atherosclerosis. The aim of this study was to investigate changes in endothelium-dependent vasodilation and vasomotion in thoracic aortic rings of E degrees xLDLR degrees mice. 2. K+-induced contractions of the aorta from E degrees xLDLR degrees mice were stronger than those from control mice. The sensitivity of E degrees xLDLR degrees aorta to phenylephrine (PE) was decreased but the maximal contractions were increased. Acetylcholine-induced, but not sodium nitroprusside-induced, relaxations of E degrees xLDLR degrees aorta was decreased. 3. PE induced rhythmic activity in both E degrees xLDLR degrees and control aorta but the amplitude was larger in E degrees xLDLR degrees than in control mice. PE-induced rhythmic activity in both E degrees xLDLR degrees and control aorta was augmented by increase in extracellular Ca2+-concentration, but was abolished by removal of the endothelium, the nitric oxide (NO) synthase inhibitor N-nitro-L-arginine methyl ester, the guanylate cyclase inhibitor LY-83583, high K+ solution and ryanodine. 4. 4-Aminopyridine, a voltage-dependent potassium (KV) channel blocker, increased basal tension and induced rhythmic activity in E degrees xLDLR degrees aorta but not in control aorta. 5. The Ca2+-activated potassium (KCa) channel blockers tetraethylammonium and charybdotoxin abolished PE-induced rhythmic activity in E degrees xLDLR degrees aorta. 6. In conclusion, opening of Kv channels in E degrees xLDLR degrees mice aorta is reduced and it is susceptible to be depolarized resulting in Ca2+ entry. The vascular smooth muscle is then dependent on compensatory mechanisms to limit Ca2+-entry. Such mechanisms may be decreased sensitivity to vasoconstrictors, or increased opening of KCa channels by NO via a cyclic GMP-dependent mechanism.  (+info)

Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. (11/952)

Novel organic cation transporter (OCTN2) is an organic cation/carnitine transporter, and two missense mutations, L352R and P478L, in OCTN2 have been identified as the cause for primary carnitine deficiency. In the present study, we assessed the influence of these two mutations on the carnitine transport function and the organic cation transport function of OCTN2. The L352R mutation resulted in a complete loss of both transport functions. In contrast, the P478L mutation resulted in a complete loss of only the carnitine transport function but significantly stimulated the organic cation transport function. Studies with human OCTN2/rat OCTN2 chimeric transporters indicated that the carnitine transport site and the organic cation transport site were not identical. Because carnitine transport is Na(+)-dependent whereas organic cation transport is Na(+)-independent, we investigated the possibility that the P478L mutation affected Na(+) binding. The Na(+) activation kinetics were found to be similar for the P478L mutant and wild type OCTN2. We then mutated nine different tyrosine residues located in or near transmembrane domains and assessed the transport function of these mutants. One of these mutations, Y211F, was found to have differential influence on the two transport activities of OCTN2 as did the P478L mutation. However, the Na(+) activation kinetics were not affected. These findings are of clinical relevance to patients with primary carnitine deficiency because whereas each and every mutation in these patients is expected to result in the loss of the carnitine transport function, all of these mutations may not interfere with the organic cation transport function.  (+info)

Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1). (12/952)

Organic cation transporters play an important role in the absorption, distribution, and elimination of clinical agents, toxic substances, and endogenous compounds. In kidney preparations, significant differences in functional characteristics of organic cation transport between various species have been reported. However, the underlying molecular mechanisms responsible for these interspecies differences are not known. The goal of this study was to determine the kinetics and substrate selectivities of organic cation transporter (OCT1) homologs from mouse, rat, rabbit, and human that may contribute to interspecies differences in the renal and hepatic handling of organic cations. With a series of n-tetraalkylammonium (nTAA) compounds, a correlation between increasing alkyl chain length and affinity for the four OCT1 homologs was observed. However, the apparent affinity constants (K(i)) differed among the species homologs. For the mouse homolog mOCT1, apparent K(i) values ranged from 7 microM for tetrabutylammonium to 2000 microM for tetramethylammonium. In contrast, the human homolog hOCT1 exhibited weaker interactions with the nTAA compounds. Trans-stimulation studies and current measurements in voltage-clamped oocytes demonstrated that larger nTAA compounds were transported at greater rates in oocytes expressing hOCT1, whereas smaller nTAAs were transported at greater rates in oocytes expressing mOCT1 or rOCT1. The rabbit homolog rbOCT1 exhibited intermediate properties in its interactions with nTAAs compared with its rodent and human counterparts. This report demonstrates that the human OCT1 homolog has functional properties distinct from those of the rodent and rabbit OCT1 homologs. The study underscores potential difficulties in extrapolating data from preclinical studies in animal models to humans.  (+info)

NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. (13/952)

Pulmonary neuroepithelial bodies (NEBs) are presumed airway chemoreceptors that express the putative O(2) sensor protein NADPH oxidase and O(2)-sensitive K(+) channels K(+)(O(2)). Although there is a consensus that redox modulation of K(+)(O(2)) may be a common O(2)-sensing mechanism, the identity of the O(2) sensor and related coupling pathways are still controversial. To test whether NADPH oxidase is the O(2) sensor in NEB cells, we performed patch-clamp experiments on intact NEBs identified by neutral red staining in fresh lung slices from wild-type (WT) and oxidase-deficient (OD) mice. In OD mice, cytochrome b(558) and oxidase function was disrupted in the gp91(phox) subunit coding region by insertion of a neomycin phosphotransferase (neo) gene. Expression in NEB cells of neo mRNA, a marker for nonfunctional gp91(phox), was confirmed by nonisotopic in situ hybridization. In WT cells, hypoxia (pO(2) = 15-20 mmHg; 1 mmHg = 133 Pa) caused a reversible inhibition ( approximately 46%) of both Ca(2+)-independent and Ca(2+)-dependent K(+) currents. In contrast, hypoxia had no effect on K(+) current in OD cells, even though both K(+) current components were expressed. Diphenylene iodonium (1 microM), an inhibitor of the oxidase, reduced K(+) current by approximately 30% in WT cells but had no effect in OD cells. Hydrogen peroxide (H(2)O(2); 0.25 mM), a reactive oxygen species generated by functional NADPH oxidase, augmented K(+) current by >30% in both WT and OD cells; further, in WT cells, H(2)O(2) restored K(+) current amplitude in the presence of diphenylene iodonium. We conclude that NADPH oxidase acts as the O(2) sensor in pulmonary airway chemoreceptors.  (+info)

Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. (14/952)

1. The effect of Centruroides sculpturatus scorpion venom on single frog myelinated nerve fibres was studied. Sodium currents through the nodal membrane were measured under voltage-clamp conditions before and after exposure to venom in Ringer solution 1-5 mug/ml. for 1-3 min. 2. Centruroides venom brings about repetitive firing and increased membrane potential noise. Spontaneous firing was also observed. Eventually the nodal membrane becomes inexcitable following venom treatment. 3. Under voltage clamp with a step depolarization of the membrane potential, activation and inactivation of sodium currents turns on, reaches a peak within about 25 msec, and then declines over several hundred milliseconds. As the amplitude and duration of the depolarizing pulse are increased, the size of the venom-induced current that follows also increases. 4. The venom-induced current turns on exponentially with a time constant near the value of the time constant for recovery from inactivation, tau-h, at the resting membrane potential. A depolarizing pulse inactivates this new current component, while a hyperpolarizing pulse leads to a larger venom-induced current immediately after the hyperpolarization. Its time course and membrane potential dependence indicate that the venom-induced current is modulated by the sodium inactivation process. 5. The membrane potential dependence of sodium activation in some channels is shifted by 40-50 mV in the hyperpolarizing direction. Depolarization increases the proportion of channels with shifted activation gating by first-older kinetics. Following a depolarizing pulse the activation parameter, m-3, remains elevated for hundreds of milliseconds, allowing channels to reopen as recovery from inactivation occurs. 6. A kinetic model with normal inactivation gating and shifted activation gating in some channels accounts for the observed voltage-clamp currents and for the repetitive firing evoked by Centruroides venom. In the model normal channels are converted to channels with shifted activation gating by a voltage dependent reaction. 7. The results suggest limits to possible coupling between sodium channel activation and inactivation. Transitions of the inactivation parameter, h, can occur normally in channels with a shifted membrane potential dependence for activation.  (+info)

A non-linear voltage dependent charge movement in frog skeletal muscle. (15/952)

1. Voltage-clamp experiments were carried out using the three microelectrode technique. Using this method membrane current density at V1 is proportional to deltaV( = V2 - V1) where V1 and V2 are voltages at distances 1 and 21 from the end of a fibre. Voltage dependent sodium currents were blocked by tetrodotoxin, potassium by tetraethylammonium ions and rubidium. Contraction was blocked by adding sucrose, 467 mM. 2. The current deltaV (control) associated with a positive voltage step from a hyperpolarized conditioning voltage to the holding potential, -80 mV, showed two components, a capacitative transient which decayed rapidly and a maintained steady level...  (+info)

Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. (16/952)

1. Voltage-clamp experiments were carried out using the techniques described in the preceding paper. 2. In one series of experiments an attempt was made to disrupt the T-system with glycerol treatment. Muscles were soaked in Ringer + 400 mM glycerol for 1 hr at room temperature, transferred to Ringer + 5 mM calcium + 5 mM magnesium for 20-30 min, and then cooled to around 2 degrees C and placed in an isosmotic test solution containing tetrodotoxin for electrical measurements. 3. The density of charge seen in isosmotic tetraethylammonium (TEA) solution with strong depolarization, normalized according to fibre capacitance, was decreased by glycerol treatment to about one third the amount seen in untreated hypertonic fibres. 4. An analysis of fibre capacitance revealed that only 0-4 of the tubular capacitance was removed by this particular glycerol procedure. If the density of charge with respect to capacitance is corrected for this decrease in capacitance, the results indicate that glycerol treatment removed or immobilized 0-77 of the charge initially present. Thus the effect of glycerol treatment to reduce charge does not depend entirely on disrupting the electrical continuity of the T-system. 5. The effects of maintained depolarization were studied using a TEA Ringer made hypertonic with sucrose. When the voltage was changed from -80 to -21 mV the measurable charge movement declined exponentially to zero with a time constant of 13-24 sec. On repolarization the process recovered exponentially to the initial level with a time constant of 21-53 sec. 6. Experiments were also carried out using a sodium Ringer made hypertonic with sucrose. For small depolarizations only charge movement currents were seen, whereas for large depolarizations large delayed ionic currents, presumably carried by potassium, were observed. With moderate depolarizations in the range V = -40 to -30 mV, both components were of comparable magnitude. 7. A plot of the fractional charge movement (Q/Qmax) vs. V fitted at moderate depolarizations is similar to that of n infinity vs. V fitted at larger depolarizations. Values of n infinity were obtained by fitting the delayed ionic current to n4(V - VK). For voltages between -40 and -30 mV the time constant for charge tauQ was always less than taun; values of taun/tauQ varied from 1-6 to 4-3. 8. Glycerol treatment had little if any effect on the kinetics of delayed rectifier currents. Values of gK measured in isosmotic solution following glycerol were about one third the values obtained in untreated fibres in a hypertonic solution (osmolality three times normal). The threefold difference in gK is probably due to a similar difference in internal potassium concentration. 9. These results and others are difficult to reconcile with the idea that the charge movement process acts as a gate for potassium channels. It seems more likely that charge movement is a step in the activation of contraction.  (+info)