UV-A-induced decrease in nuclear factor-kappaB activity in human keratinocytes. (17/10860)

Previous reports have demonstrated an increase in nuclear factor-kappaB (NF-kappaB) activity in response to UV radiation. These studies have essentially focused on the DNA-damaging fraction of solar UV radiation (UV-B and UV-C). In contrast, the effects of UV-A radiation (320-400 nm) on NF-kappaB are not well known. In this study, we present evidence that UV-A radiation induces a marked decrease in NF-kappaB DNA-binding activity in NCTC 2544 human keratinocytes. In addition, NCTC 2544 keratinocytes pretreated with UV-A fail to respond to NF-kappaB inducers. Moreover, UV-A radiation induces a decrease in NF-kappaB-driven luciferase reporter gene expression in NCTC 2544 keratinocytes. The expression of the gene encoding IkappaBalpha (IkappaB is the NF-kappaB inhibitor), which is closely associated with NF-kappaB activity, is also reduced (3-fold) upon UV-A treatment. Our results indicate that the UV-A-induced decrease in NF-kappaB DNA-binding activity is associated with a decrease in the levels of the p50 and p65 protein subunits. This is the first evidence that an oxidative stress, such as UV-A radiation, may induce a specific decrease in NF-kappaB activity in mammalian cells, probably through degradation of NF-kappaB protein subunits. These findings suggest that UV-A could modulate the NF-kappaB-dependent gene expression.  (+info)

Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. (18/10860)

Heme oxygenase (HO) catalyzes the conversion of heme to carbon monoxide, iron, and biliverdin, which is immediately reduced to bilirubin (BR). Two HO active isozymes exist: HO1, an inducible heat shock protein, and HO2, which is constitutive and highly concentrated in neurons. We demonstrate a neuroprotective role for BR formed from HO2. Neurotoxicity elicited by hydrogen peroxide in hippocampal and cortical neuronal cultures is prevented by the phorbol ester, phorbol 12-myristate 13-acetate (PMA) via stimulation of protein kinase C. We observe phosphorylation of HO2 through the protein kinase C pathway with enhancement of HO2 catalytic activity and accumulation of BR in neuronal cultures. The neuroprotective effects of PMA are prevented by the HO inhibitor tin protoporphyrin IX and in cultures from mice with deletion of HO2 gene. Moreover, BR, an antioxidant, is neuroprotective at nanomolar concentrations.  (+info)

Effect of renal dialysis therapy modality on T cell cytokine production. (19/10860)

INTRODUCTION: Dialysis has been associated with acute changes in the complement activation status, granulocyte markers, macrophage function, T cell activation and the release of pro-inflammatory cytokines. The most common analysis of cytokine production in patients on dialysis has focused on the changes in monokines (particularly IL-1 and TNF alpha), however it is becoming clear that T cell cytokines play a major role in the impaired lymphocyte function of dialysis patients. METHODS: To assess the effect of dialysis modality on T cell function we analysed the ability of T cells within peripheral blood mononuclear cell populations (PBMC) to produce cytokines after mitogen (phorbol-12-myristate-13-acetate; PMA and lonomycin; I) stimulation in patients on peritoneal dialysis (PD) compared to low flux haemodialysis (HD) and normal individuals (controls). RESULTS: In control PBMC, PMA + I stimulation significantly increased the percentage of CD3+ cells expressing IL-2, IFN gamma, TNF alpha, IL-4 and IL-10, as expected. However, although mitogen stimulation significantly enhanced the percentage of the classical Th1 cytokines (IL-2, IFN gamma and TNF alpha) in the low flux HD PBMC, it had no effect on CD3+ IL-2 or CD3+ TNF alpha producing cells in the PD group. In contrast, the percentage of T cells producing Th2 cytokines (IL-4 and IL-10) could not be consistently enhanced by mitogen in either dialysis group. CONCLUSIONS: We suggest that PD alters the ability of T cells to produce cytokines, possibly by causing an 'exhaustion' of the Th1 cells, thereby preventing cells to produce cytokine on ex vivo stimulation. Furthermore, since T cells from both low flux HD and PD groups could not be induced to produce Th2 cytokines we suggest that uraemia or dialysis per se inhibits T cells from producing Th2 cytokines.  (+info)

Effect of magnetic field exposure on anchorage-independent growth of a promoter-sensitive mouse epidermal cell line (JB6). (20/10860)

The anchorage-independent growth of mouse epidermal cells (JB6) exposed to 60-Hz magnetic fields (MF) was investigated. Promotion-responsive JB6 cells were suspended in agar (10(4)cells/plate) and exposed continuously to 0.10 or 0.96 mT, 60-Hz magnetic fields for 10-14 days, with or without concurrent treatment with the tumor promoter tetradecanoylphorbol acetate (TPA). Exposures to MF were conducted in a manner such that the experimenter was blind to the treatment group of the cells. At the end of the exposure period, the anchorage-independent growth of JB6 cells on soft agar was examined by counting the number of colonies larger than 60 microm (minimum of 60 cells). The use of a combined treatment of the cells with both MF and TPA was to provide an internal positive control to estimate the success of the assay and to allow evaluation of co-promotion. Statistical analysis was performed by a randomized block design analysis of variance to examine both the effect of TPA treatment (alone and in combination with MF exposure) and the effect of intra-assay variability. Transformation frequency of JB6 cells displayed a dose-dependent response to increasing concentrations of TPA. Coexposure of cells to both TPA and 0.10 or 0.96 mT, 60-Hz MF did not result in any differences in transformation frequency for any TPA concentrations tested (0-1 ng/ml). These data indicate that exposure to a 0.10 or 0.96 mT, 60-Hz MF does not act as a promoter or co-promoter in promotion-sensitive JB6 cell anchorage-independent growth.  (+info)

Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. (21/10860)

In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.  (+info)

Mechanical stimulation regulates voltage-gated potassium currents in cardiac microvascular endothelial cells. (22/10860)

Vascular endothelial cells are constantly exposed to mechanical forces resulting from blood flow and transmural pressure. The goal of this study was to determine whether mechanical stimulation alters the properties of endothelial voltage-gated K+ channels. Cardiac microvascular endothelial cells (CMECs) were isolated from rat ventricular muscle and cultured on thin sheets of silastic membranes. Membrane currents were measured with the use of the whole-cell arrangement of the patch-clamp technique in endothelial cells subjected to static stretch for 24 hours and compared with measurements from control, nonstretched cells. Voltage steps positive to -30 mV resulted in the activation of a time-dependent, delayed rectifier K+current (IK) in the endothelial cells. Mechanically induced increases of 97%, 355%, and 106% at +30 mV were measured in the peak amplitude of IK in cells stretched for 24 hours by 5%, 10%, and 15%, respectively. In addition, the half-maximal voltage required for IK activation was shifted from +34 mV in the nonstretched cells to -5 mV in the stretched cells. Although IK in both groups of CMECs was blocked to a similar extent by tetraethylammonium, currents in the stretched endothelial cells displayed an enhanced sensitivity to inhibition by charybdotoxin. Preincubation of the CMECs with either pertussis toxin or phorbol 12-myristate 13-acetate during the 24 hours of cell stretch did not prevent the increase in IK. The application of phorbol 12-myristate 13-acetate and static stretch stimulated the proliferation of CMECs. Stretch-induced regulation of K+ channels may be important to control the resting potential of the endothelium and may contribute to capillary growth during periods of mechanical perturbation.  (+info)

Up-regulation of the Pit-2 phosphate transporter/retrovirus receptor by protein kinase C epsilon. (23/10860)

The membrane receptors for the gibbon ape leukemia retrovirus and the amphotropic murine retrovirus serve normal cellular functions as sodium-dependent phosphate transporters (Pit-1 and Pit-2, respectively). Our earlier studies established that activation of protein kinase C (PKC) by treatment of cells with phorbol 12-myristate 13-acetate (PMA) enhanced sodium-dependent phosphate (Na/Pi) uptake. Studies now have been carried out to determine which type of Na/Pi transporter (Pit-1 or Pit-2) is regulated by PKC and which PKC isotypes are involved in the up-regulation of Na/Pi uptake by the Na/Pi transporter/viral receptor. It was found that the activation of short term (2-min) Na/Pi uptake by PMA is abolished when cells are infected with amphotropic murine retrovirus (binds Pit-2 receptor) but not with gibbon ape leukemia retrovirus (binds Pit-1 receptor), indicating that Pit-2 is the form of Na/Pi transporter/viral receptor regulated by PKC. The PKC-mediated activation of Pit-2 was blocked by pretreating cells with the pan-PKC inhibitor bisindolylmaleimide but not with the conventional PKC isotype inhibitor Go 6976, suggesting that a novel PKC isotype is required to regulate Pit-2. Overexpression of PKCepsilon, but not of PKCalpha, -delta, or -zeta, was found to mimic the activation of Na/Pi uptake. To further establish that PKCepsilon is involved in the regulation of Pit-2, cells were treated with PKCepsilon-selective antisense oligonucleotides. Treatment with PKCepsilon antisense oligonucleotides decreased the PMA-induced activation of Na/Pi uptake. These results indicate that PMA-induced stimulation of Na/Pi uptake by Pit-2 is specifically mediated through activation of PKCepsilon.  (+info)

Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. (24/10860)

IgA is the most abundant immunoglobulin in mucosal areas but is only the second most common antibody isotype in serum because it is catabolized faster than IgG. IgA exists in monomeric and polymeric forms that function through receptors expressed on effector cells. Here, we show that IgA Fc receptor(s) (FcalphaR) are expressed with or without the gamma chain on monocytes and neutrophils. gamma-less FcalphaR represent a significant fraction of surface FcalphaR molecules even on cells overexpressing the gamma chain. The FcalphaR-gamma2 association is up-regulated by phorbol esters and interferon-gamma. To characterize gamma-less FcalphaR functionally, we generated mast cell transfectants expressing wild-type human FcalphaR or a receptor with a point mutation (Arg --> Leu at position 209) which was unable to associate with the gamma chain. Mutant gamma-less FcalphaR bound monomeric and polymeric human IgA1 or IgA2 but failed to induce exocytosis after receptor clustering. The two types of transfectant showed similar kinetics of FcalphaR-mediated endocytosis; however, the endocytosis pathways of the two types of receptor differed. Whereas mutant FcalphaR were localized mainly in early endosomes, those containing FcalphaR-gamma2 were found in endo-lysosomal compartments. Mutant gamma-less FcalphaR recycled the internalized IgA toward the cell surface and protected against IgA degradation. Cells expressing the two forms of FcalphaR, associated or unassociated with gamma chains, may thus have differential functions either by degrading IgA antibody complexes or by recycling serum IgA.  (+info)