Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. (73/7518)

The glandular epithelial cells of the human prostate gland have the unique capability and function of accumulating the highest zinc levels of any soft tissue in the body. Zinc accumulation in the prostate is regulated by prolactin and testosterone; however, little information is available concerning the mechanisms associated with zinc accumulation and its regulation in prostate epithelial cells. In the present studies the uptake and accumulation of zinc were determined in the human malignant prostate cell lines LNCaP and PC-3. The results demonstrate that LNCaP cells and PC-3 cells possess the unique capability of accumulating high levels of zinc. Zinc accumulation in both cell types is stimulated by physiological concentrations of prolactin and testosterone. The studies reveal that these cells contain a rapid zinc uptake process indicative of a plasma membrane zinc transporter. Initial kinetic studies demonstrate that the rapid uptake of zinc is effective under physiological conditions that reflect the total and mobile zinc levels in circulation. Correspondingly, genetic studies demonstrate the expression of a ZIP family zinc uptake transporter in both LNCaP and PC-3 cells. The rapid zinc uptake transport process is stimulated by treatment of cells with physiological levels of prolactin and testosterone, which possibly is the result of the regulation of the ZIP-type zinc transporter gene. These zinc-accumulating characteristics are specific for prostate cells. The studies support the concept that these prostate cells express a unique hormone-responsive, plasma membrane-associated, rapid zinc uptake transporter gene associated with their unique ability to accumulate high zinc levels.  (+info)

Effects of sex hormones on action potential and contraction of guinea pig papillary muscle. (74/7518)

AIM: To study the effects of sex hormones, estradiol (Est), progesterone (Pro) and testosterone (Tes) on the action potential (AP) and contraction of guinea pig papillary muscle. METHODS: Using conventional glass microelectrode and mechanical recording of myocardial contraction. RESULTS: Est slowed down the maximal rate of rise of phase 0 (Vmax) of AP at low concentration (1 mumol.L-1). At 10 mumol.L-1 and above, Est also prolonged AP duration (APD50 and APD90), effective refractory period (ERP) and decreased the maximal isometric tension (Pmax) and velocity of tension development (dT/dt) of contraction. Tes (100 mumol.L-1 - 1 mmol.L-1) prolonged APD90 and ERP with decreased Pmax and dT/dt. But Pro (1 mumol.L-1 - 1 mmol.L-1) had no effects on both AP and contraction. CONCLUSION: Est prolonged AP and depressed contraction of guinea pig papillary muscle.  (+info)

Binding characteristics of estrogen receptor (ER) in Atlantic croaker (Micropogonias undulatus) testis: different affinity for estrogens and xenobiotics from that of hepatic ER. (75/7518)

An estrogen receptor (ER) was identified in cytosolic and nuclear fractions of the testis in a marine teleost, Atlantic croaker (Micropogonias undulatus). A single class of high affinity, low capacity, and displaceable binding sites was identified by saturation analysis, with a Kd of 0.40 nM in cytosolic extracts and a Kd of 0.33 nM in nuclear extracts. Competition studies demonstrated that the receptor was highly specific for estrogens (diethylstilbestrol > estradiol >> estriol = estrone) and also bound several antiestrogens. Testosterone and 5alpha-dihydrotestosterone had much lower affinities for the receptor, whereas no displacement of specific binding occurred with 11-ketotestosterone or any of the C21 maturation-inducing steroids. A variety of xenoestrogens, including o,p'-dichlorodiphenyltrichloroethane (DDT), chlordecone (Kepone), nonylphenol, hydroxylated polychlorinated biphenyls (PCBs), and the mycotoxin zearalenone, bound to the receptor with relatively low binding affinities, 10(-3) to 10(-5) that of estradiol. A comparison of the binding affinities of various ligands for the testicular ER and the hepatic ER in this species revealed that the testicular ER was saturated at a lower [3H]estradiol concentration (1 nM vs. 4 nM). The binding affinities of several compounds, including testosterone and nafoxidine, exhibited marked differences for the two ERs; and most of the estrogens and xenoestrogens tested had higher binding affinities for the testicular receptor. Minor amounts of estradiol (0.12 ng/g tissue/h) were produced by testicular tissue fragments incubated in vitro, and estradiol was detected in male Atlantic croaker plasma. The identification of a testicular ER and evidence that estradiol is produced by the testes in croaker suggest that estrogens participate in the hormonal control of testicular function in teleosts.  (+info)

Germ cell apoptosis in the testes of Sprague Dawley rats following testosterone withdrawal by ethane 1,2-dimethanesulfonate administration: relationship to Fas? (76/7518)

Germ cell apoptosis, which occurs normally during spermatogenesis, increases after testosterone withdrawal from the testis. The molecular mechanism by which this occurs remains uncertain. The Fas system has been implicated as a possible key regulator of apoptosis in various cells: binding of Fas ligand (FasL), a type II transmembrane protein, to Fas, a type I transmembrane receptor protein, triggers apoptosis in cells expressing Fas. Recently, Fas has been localized to germ cells, and FasL to Sertoli cells, within the rat testis. We hypothesized that Fas protein content would rise in response to reduced levels of testosterone as part of a suicide pathway that would result in germ cell apoptosis. To test this hypothesis, ethane 1,2-dimethanesulfonate (EDS), a Leydig cell toxicant, was used to kill Leydig cells and thus reduce intratesticular testosterone levels in Sprague Dawley rats. Apoptosis was examined in situ and biochemically, and Fas protein content in the testis was monitored by Western blot analysis. We show that EDS injection results in the following sequence of events: apoptotic death of Leydig cells by a mechanism that does not involve Fas; reduced testosterone; increased testicular Fas content; and germ cell apoptosis. These results suggest that Fas may play a role in the apoptotic death of germ cells that results from reduced intratesticular testosterone levels, and that testosterone may play a role in germ cell survival via its suppression of Fas.  (+info)

Imprinting by neonatal sex steroids on the structure and function of the mature mouse prostate. (77/7518)

Perinatal sex-steroid exposure may result in permanent modifications in the structure and function of the prostate gland. The mechanism of such long-range alterations in hormonal sensitivity is not known. This study aimed to define the molecular requirements for neonatal sex-steroid imprinting and to investigate whether combined administration of neonatal androgens and estrogens had synergistic effects upon the mature mouse prostate. Since the interaction between endogenous and exogenous sex steroids in normal mice makes it difficult to dissociate direct from indirect effects, we used the hypogonadal (hpg) mouse, characterized by congenital androgen deficiency yet still fully responsive to exogenous androgens. Newborn mice (Days 1-2) were administered a single s.c. injection of androgens alone or in combination with an estrogen followed by testosterone-induced maximal prostate growth at maturity. The final effects were determined in 7-wk-old mice through study of ductal architecture in microdissected ventral prostates (VP) and quantitation of volume densities and diameters of prostate tissue components. A single neonatal dose of androgens, but not of estrogen, increased branching morphogenesis and VP weights at adulthood. These effects did not differ significantly between various androgens; in addition, combined androgen and estrogen treatment failed to demonstrate any synergistic effects on the prostate. We conclude that neonatal androgens induce long-range effects upon the mature VP structure as well as its secretory function and that this imprinting occurs via the androgen receptor without requiring aromatization of androgens. However, these conclusions, based on a specific treatment protocol, are confined only to the distal segment of VP, and effects of neonatal sex-steroid exposure in other regions or lobes of VP may differ.  (+info)

Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. (78/7518)

The cDNA coding for mouse aldehyde oxidase (AO), a molybdoflavoprotein, has been isolated and characterized. The cDNA is 4347 nt long and consists of an open reading frame predicting a polypeptide of 1333 amino acid residues, with 5' and 3' untranslated regions of 13 and 335 nt respectively. The apparent molecular mass of the translation product in vitro derived from the corresponding cRNA is consistent with that of the monomeric subunit of the AO holoenzyme. The cDNA codes for a catalytically active form of AO, as demonstrated by transient transfection experiments conducted in the HC11 mouse mammary epithelial cell line. The deduced primary structure of the AO protein contains consensus sequences for two distinct 2Fe-2S redox centres and a molybdopterin-binding site. The amino acid sequence of the mouse AO has a high degree of similarity with the human and bovine counterparts, and a significant degree of relatedness to AO proteins of plant origin. Northern blot and in situ hybridization analyses demonstrate that hepatocytes, cardiocytes, lung endothelial or epithelial cells and oesophagus epithelial cells express high levels of AO mRNA. In the various tissues and organs considered, the level of AO mRNA expression is not strictly correlated with the amount of the corresponding protein, suggesting that the synthesis of the AO enzyme is under translational or post-translational control. In addition, we observed sex-related regulation of AO protein synthesis. In the liver of male animals, despite similar amounts of AO mRNA, the levels of the AO enzyme and corresponding polypeptide are significantly higher than those in female animals. Treatment of female mice with testosterone increases the amounts of AO mRNA and of the relative translation product to levels similar to those in male animals.  (+info)

Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. (79/7518)

The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, bulbocavernosus and levator ani (BC/LA), form a sexually dimorphic neuromuscular circuit whose development and maintenance are androgen-dependent. The mechanisms whereby androgen regulates gene expression in the SNB of adult rats are largely unknown, although a retrograde influence from the BC/LA muscles has been suggested to underlie the suppression of calcitonin gene-related peptide (CGRP) expression observed in SNB motoneurons after systemic androgen treatment. A mosaic paradigm was used to determine the site of action of androgen in the regulation of CGRP expression in SNB motoneurons. As a consequence of random X chromosome inactivation, androgenized female rats heterozygous for the tfm androgen receptor (AR) mutation (XwtXtfm-mosaics) express a mosaic of androgen-sensitive and androgen-insensitive motoneurons in the SNB, whereas the BC/LA target musculature appears to be uniformly sensitive to androgens. In adult mosaics, testosterone administration resulted in a reduction in the proportion of androgen-sensitive cells expressing CGRP, whereas no such reduction was observed in the androgen-insensitive population, indicating that neuronal AR plays an essential role in the neuromuscular regulation of CGRP expression in these motoneurons. This provides the first in vivo demonstration of AR regulation of gene expression unambiguously localized to a neuronal population.  (+info)

Sequence and expression of a cDNA encoding the red seabream androgen receptor. (80/7518)

The cDNA of the androgen receptor (AR) has been isolated from the ovary of red seabream, Pagrus major, and sequenced. The amino acid sequence of red seabream AR (rsAR) shows about 45% identity with those of Xenopus, rat, mouse, and human ARS. It is shown that rsAR has the ability to trans-activate the responsive gene depending on the presence of androgen.  (+info)