Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? (1/8)

 (+info)

High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. (2/8)

 (+info)

Evidence of an alternative route of cellobiase secretion in the presence of brefeldin A in the filamentous fungus Termitomyces clypeatus. (3/8)

Secretion of cellobiase occurred in a brefeldin A (BFA) uninhibited manner in the filamentous fungus Termitomyces clypeatus. Fluorescence confocal microscopy revealed that application of the drug at a concentration of 50 microgram/ml caused arrest of Spitzenkorper assembly at the hyphal tip. This resulted in greater than 30% inhibition of total protein secretion in the culture medium. However, the cellobiase titer increased by 17%, and an additional 13% was localized in the vacuolar fraction en route secretion. The secretory vacuoles formed in the presence of the drug were also found to be bigger (68 nm) than those in the control cultures (40 nm). The enzyme secreted in the presence and absence of BFA revealed a single activity band in both cases in native PAGE and had similar molecular masses (approx. 120 kDa) in SDS-PAGE. The BFA enzyme retained 72% of native glycosylation. It also exhibited a higher stability and retained 98% activity at 50 degrees C, 93.3% activity at pH 9, 63.64% activity in the presence of 1M guanidium hydrochloride, and 50% activity at a glucose concentration of 10 mg/ml in comparison to 68% activity, 75% activity, 36% activity, and 19% activity for the control enzyme, respectively. The observations collectively aimed at the operation of an alternative secretory pathway, distinct from the target of brefeldin A, which bypassed the Golgi apparatus, but still was able to deliver the cargo to the vacuoles for secretion. This can be utilized in selectively enhancing the yield and stability of glycosidases for a successful industrial recipe.  (+info)

A novel alkaline protease from wild edible mushroom Termitomyces albuminosus. (4/8)

A protease with a molecular mass of 30 kDa and the N-terminal sequence of GLQTNAPWGLARSS, was isolated from fresh fruiting bodies of the wild edible mushroom Termitomyces albuminosus. The purification protocol included ion exchange chromatography on DEAE-cellulose, Q-Sepharose, SP-Sepharose and FPLC-gel filtration on Superdex 75. The protein was unadsorbed on DEAE-cellulose and Q-Sepharose, but adsorbed on SP-Sepharose. The optimal pH and temperature of the purified enzyme were 10.6 and 60 degrees C, respectively. The enzyme was stable in the presence of 2 % (v/v) Tween 80 and 4 M urea. More than 80 % of the enzyme activity was retained in 2 % (v/v) Triton X 100, 54 % in 10 mM EDTA and 31 % in 2 % (w/v) SDS. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), but not inhibited by dithiothreitol (DTT), pepstatin or lima bean trypsin inhibitor suggesting that it was a serine protease but not a trypsin-like one. The protease was inhibited by Hg(2+), Cu(2+), and Fe(3+) ions. The K(m) and V(max) values of the purified enzyme for casein were 8.26 mg ml(-1) and 0.668 mg ml(-1) min(-1), respectively.  (+info)

Termitomycesphins G and H, additional cerebrosides from the edible Chinese mushroom Termitomyces albuminosus. (5/8)

Two new cerebrosides, termitomycesphins G and H, were isolated from the edible Chinese mushroom, Termitomyces albuminosus (Berk.) Herm., and exhibited neuritogenic activity against PC12 cells. Their structures and absolute stereochemistry were elucidated by spectroscopic methods and by a comparison of the specific rotation of the hydrogenated products from termitomycesphins H and C. These cerebrosides possessed a unique modification by a hydroxyl group at the middle of the long-chain base, like earlier congeners termitomycesphins A-F. Termitomycesphin G with a 16-carbon-chain fatty acid showed higher neuritogenic activity than that of termitomycesphin H with an 18-carbon-chain fatty acid. This effect was observed within the termitomycesphins, suggesting that the chain length of the fatty acyl moiety played a key role in the neuritogenic activity.  (+info)

Wild termitomyces species collected from Ondo and Ekiti States are more related to African species as revealed by ITS region of rDNA. (6/8)

 (+info)

Novel cerebroside, termitomycesphin I, from the mushroom, Termitomyces titanicus. (7/8)

The novel cerebroside, termitomycesphin I (1), and two known cerebrosides (2 and 3) were isolated from the edible mushroom, Termitomyces titanicus. The structures of 1-3 were determined and identified by interpreting the spectroscopic data.  (+info)

Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods. (8/8)

 (+info)