Terminator element mutations affect both the efficiency and position of RNA polymerase I termination in Schizosaccharomyces pombe. (9/828)

RNA polymerase I transcripts, purified from Schizosaccharomyces pombe cells, terminate at three sites that precede 'Sal box'-like termination element (TE) sequences. Essential features in these elements were investigated by the in vivo expression of targeted mutations. RNA analyses confirmed a functional significance for two of the elements (Boxes 1 and 3), but indicated that the third, less related, sequence (Box 2) does not function as a termination signal. The results further indicated that the most conserved residues in the two active TEs, as well as adjacent regions, are also most critical to function. Furthermore, some mutations in these elements or in immediately flanking sequences affect not only the efficiency of termination, but also alter the position of termination by as much as 35 nt. Since the element is able to influence the site of termination over a surprisingly long stretch of DNA sequence, these observations suggest that the TE does not act simply as a pause element by fixing the termination factor.  (+info)

Characterisation of the enzymatic and RNA-binding properties of the Rhodobacter sphaeroides 2.4.1. Rho homologue. (10/828)

The Escherichia coli Rho is a transcription termination factor with complex enzymatic properties. Rho is a near-universal prokaryotic transcription factor, but very few non-enteric Rho factors have been studied. The expression and enzymatic activity of Rho from the GC-rich, Gram-negative bacterium Rhodobacter sphaeroides was characterised. Poly(C)-activated ATP hydrolysis, multimerisation and the abundance of the R. sphaeroides Rho were similar to the E. coli Rho. The R. sphaeroides Rho was a DNA:RNA helicase. The R. sphaeroides Rho was unique in Rho factors characterised to date in that it did not interact with the lambdatR1 terminator transcript and ATP hydrolysis was unusually weakly activated by poly(U) RNA. A chimeric Rho (RhoER), with the RNA-binding domain from the E. coli Rho and the ATPase domain of the R. sphaeroides Rho, was activated by RNA co-factors in a similar fashion to the E. coli Rho. The activity of RhoER suggests functional interactions between the N- and C-terminal domains of Rho monomers are highly conserved between Rho factors. The main differences between Rho factors from different bacteria is in the specificity of RNA binding although this does not appear to be necessarily dependent on the GC bias of target RNA as has been previously suggested.  (+info)

The genes encoding formamidopyrimidine and MutY DNA glycosylases in Escherichia coli are transcribed as part of complex operons. (11/828)

Escherichia coli formamidopyrimidine (Fpg) DNA glycosylase and MutY DNA glycosylase are base excision repair proteins that work together to protect cells from the mutagenic effects of the commonly oxidized guanine product 7,8-dihydro-8-oxoguanine. The genes encoding these proteins, fpg and mutY, are both cotranscribed as part of complex operons. fpg is the terminal gene in an operon with the gene order radC, rpmB, rpmG, and fpg. This operon has transcription initiation sites upstream of radC, in the radC coding region, and immediately upstream of fpg. There is a strong attenuator in the rpmG-fpg intergenic region and three transcription termination sites downstream of fpg. There is an additional site, in the radC-rpmB intergenic region, that corresponds either to a transcription initiation site or to an RNase E or RNase III cleavage site. mutY is the first gene in an operon with the gene order mutY, yggX, mltC, and nupG. This operon has transcription initiation sites upstream of mutY, in the mutY coding region, and immediately upstream of nupG. There also appear to be attenuators in the yggX-mltC and mltC-nupG intergenic regions. The order of genes in these operons has been conserved or partially conserved only in other closely related gram-negative bacteria, although it is not known whether the genes are cotranscribed in these other organisms.  (+info)

Nup124p is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retrotransposon Tf1. (12/828)

The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.  (+info)

Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes. (13/828)

Using either highly purified RNA polymerase II (pol II) elongation complexes assembled on oligo(dC)-tailed templates or promoter-initiated (extract-generated) pol II elongation complexes, the precise 3" ends of transcripts produced during transcription in vitro at several human c- and N- myc pause, arrest and termination sites were determined. Despite a low overall similarity between the entire c- and N- myc first exon sequences, many positions of pol II pausing, arrest or termination occurred within short regions of related sequence shared between the c- and N- myc templates. The c- and N- myc genes showed three general classes of sequence conservation near intrinsic pause, arrest or termination sites: (i) sites where arrest or termination occurred after the synthesis of runs of uridines (Us) preceding the transcript 3" end, (ii) sites downstream of potential RNA hairpins and (iii) sites after nucleotide addition following either a U or a C or following a combination of several pyrimidines near the transcript 3" end. The finding that regions of similarity occur near the sites of pol II pausing, arrest or termination suggests that the mechanism of c- and N- myc regulation at the level of transcript elongation may be similar and not divergent as previously proposed.  (+info)

A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization. (14/828)

The gene and cDNA of an Arabidopsis thaliana cytidine deaminase (CDA) were cloned and sequenced. The gene, At-cda1, is located on chromosome 2 and is expressed in all plant tissues tested, although with quantitative differences. Expression analysis suggest that At-cda1 probably codes for the housekeeping cytidine deaminase of Arabidopsis. The gene was functionally expressed in Escherichia coli and the protein, At-CDA1, shows similar enzymatic and substrate specificities as conventional cytidine deaminases: it deaminates cytidine and deoxycytidine and is competitively inhibited by cytosine-containing compounds. Because the protein shows no affinity to RNA, it is not likely to be involved in RNA-editing by C-to-U deamination. When compared to cytidine deaminases from other organisms, it becomes clear that At-CDA1 is related, both in sequence and structure, to the CDA of E. coli and other gram-negative bacteria. The eubacterial nature of the Arabidopsis CDA suggests that it is an additional example of a plant gene of endosymbiotic origin.  (+info)

Repression of IS200 transposase synthesis by RNA secondary structures. (15/828)

The IS 200 transposase, a 16 kDa polypeptide encoded by the single open reading frame (ORF) of the insertion element, has been identified using an expression system based on T7 RNA polymerase. In wild-type IS 200, two sets of internal inverted repeats that generate RNA secondary structures provide two independent mechanisms for repression of transposase synthesis. The inverted repeat located near the left end of IS 200 is a transcriptional terminator that terminates read-through transcripts before they reach the IS 200 ORF. The terminator is functional in both directions and may terminate >80% of transcripts. Another control operates at the translational level: transposase synthesis is inhibited by occlusion of the ribosome-binding site (RBS) of the IS 200 ORF. The RBS (5'-AGGGG-3') is occluded by formation of a mRNA stem-loop structure whose 3' end is located only 3 nt upstream of the start codon. This mechanism reduces transposase synthesis approximately 10-fold. Primer extension experiments with AMV reverse transcriptase have provided evidence that this stem-loop RNA structure is actually formed. Tight repression of transposase synthesis, achieved through synergistic mechanisms of negative control, may explain the unusually low transposition frequency of IS 200.  (+info)

A 5' RNA stem-loop participates in the transcription attenuation mechanism that controls expression of the Bacillus subtilis trpEDCFBA operon. (16/828)

The trp RNA-binding attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation. Tryptophan-activated TRAP binds to the nascent trp leader transcript by interacting with 11 (G/U)AG repeats. TRAP binding prevents formation of an antiterminator structure, thereby promoting formation of an overlapping terminator, and hence transcription is terminated before RNA polymerase can reach the trp structural genes. In addition to the antiterminator and terminator, a stem-loop structure is predicted to form at the 5' end of the trp leader transcript. Deletion of this structure resulted in a dramatic increase in expression of a trpE'-'lacZ translational fusion and a reduced ability to regulate expression in response to tryptophan. By introducing a series of point mutations in the 5' stem-loop, we found that both the sequence and the structure of the hairpin are important for its regulatory function and that compensatory changes that restored base pairing partially restored wild-type-like expression levels. Our results indicate that the 5' stem-loop functions primarily through the TRAP-dependent regulatory pathway. Gel shift results demonstrate that the 5' stem-loop increases the affinity of TRAP for trp leader RNA four- to fivefold, suggesting that the 5' structure interacts with TRAP. In vitro transcription results indicate that this 5' structure functions in the attenuation mechanism, since deletion of the stem-loop caused an increase in transcription readthrough. An oligonucleotide complementary to a segment of the 5' stem-loop was used to demonstrate that formation of the 5' structure is required for proper attenuation control of this operon.  (+info)