A novel membrane sensor for histamine H1-receptor antagonist "fexofenadine". (41/207)

The construction and general performance of thirteen new polymeric membrane sensors for the determination of fexofenadine hydrochloride based on its ion exchange with reineckate, tetraphenylborate and tetraiodomercurate have been studied. The effects of membrane composition, type of plasticizer, pH value of sample solution and concentration of the analyte in the sensor internal solution have been thoroughly investigated. The novel sensor based on reineckate exchanger shows a stable, potentiometric response for fexofenadine in the concentration range of 1 x 10(-2) - 2.5 x 10(-6) M at 25 degrees C that is independent of pH in the range of 2.0 - 4.5. The sensor possesses a Nernstian cationic slope of 62.3+/-0.7 mV/concentration decade and a lower detection limit of 1.3 x 10(-6) M with a fast response time of 20 - 40 s. Selectivity coefficients for a number of interfering ions and excipients relative to fexofenadine were investigated. There is negligible interference from almost all studied cations, anions, and pharmaceutical excipients, however, citrizine that has a structure homologous to that of fexofenadine was found to interfere. The determination of fexofenadine in aqueous solution shows an average recovery of 99.83% with a mean relative standard deviation (RSD) of 0.5%. Direct potentiometric determination of fexofenadine in tablets gave results that compare favorably with those obtained by standard spectrophotometric methods. Potentiometric titration of fexofenadine with phosphomolybdic acid as a titrant has been monitored with the proposed sensor as an end point indicator electrode.  (+info)

H1 receptor-mediated vasodilatation contributes to postexercise hypotension. (42/207)

In normally active individuals, postexercise hypotension after a single bout of aerobic exercise is due to an unexplained peripheral vasodilatation. Histamine has been shown to be released during exercise and could contribute to postexercise vasodilatation via H1 receptors in the peripheral vasculature. The purpose of this study was to determine the potential contribution of an H1 receptor-mediated vasodilatation to postexercise hypotension. We studied 14 healthy normotensive men and women (ages 21.9 +/- 2.1 years) before and through to 90 min after a 60 min bout of cycling at 60% on randomized control and H1 receptor antagonist days (540 mg oral fexofenadine hydrochloride; Allegra). Arterial blood pressure (automated auscultation) and femoral blood flow (Doppler ultrasound) were measured in the supine position. Femoral vascular conductance was calculated as flow/pressure. Fexofenadine had no effect on pre-exercise femoral vascular conductance or mean arterial pressure (P > 0.5). At 30 min postexercise on the control day, femoral vascular conductance was increased (Delta+33.7 +/- 7.8%; P < 0.05 versus pre-exercise) while mean arterial pressure was reduced (Delta-6.5 +/- 1.6 mmHg; P < 0.05 versus pre-exercise). In contrast, at 30 min postexercise on the fexofenadine day, femoral vascular conductance was not elevated (Delta+10.7 +/- 9.8%; P = 0.7 versus pre-exercise) and mean arterial pressure was not reduced (Delta-1.7 +/- 1.2 mmHg; P = 0.2 versus pre-exercise). Thus, ingestion of an H1 receptor antagonist markedly reduces vasodilatation after exercise and blunts postexercise hypotension. These data suggest H1 receptor-mediated vasodilatation contributes to postexercise hypotension.  (+info)

P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. (43/207)

Fexofenadine is a selective, nonsedating H(1)-receptor antagonist approved for symptoms of allergic conditions, which is mainly excreted into feces via biliary excretion. The purpose of this study is to investigate its pharmacokinetics in mice and rats to determine the role of P-glycoprotein (P-gp) in its biliary excretion. In mice, biliary excretion clearance (17 ml/min/kg) accounted for almost 60% of the total body clearance (30 ml/min/kg). Comparing the pharmacokinetics after intravenous and oral administration indicated that the bioavailability of fexofenadine was at most 2% in mice. Knockout of Mdr1a/1b P-gp did not affect the biliary excretion clearance with regard to both plasma and liver concentrations, whereas the absence of P-gp caused a 6-fold increase in the plasma concentration after oral administration. In addition, the steady-state brain-to-plasma concentration ratio of fexofenadine was approximately 3-fold higher in Mdr1a/1b P-gp knockout mice than in wild-type mice. Together, these results show that P-glycoprotein plays an important role in efflux transport in the brain and small intestine but only a limited role in biliary excretion in mice. In addition, there was no difference in the biliary excretion between normal and hereditarily multidrug resistance-associated protein 2 (Mrp2)-deficient mutant rats (Eisai hyperbilirubinemic rats) and between wild-type and breast cancer resistance protein (Bcrp) knockout mice. These results suggest that the biliary excretion of fexofenadine is mediated by unknown transporters distinct from P-gp, Mrp2, and Bcrp.  (+info)

Role of sodium and calcium channel block in unmasking the Brugada syndrome. (44/207)

OBJECTIVE: We hypothesized that a combination of I(Na) and I(Ca) blockade may be more effective in causing loss of the epicardial action potential (AP) dome and precipitating the Brugada syndrome (BS). The present study was designed to test this hypothesis in an in vitro model of BS. BACKGROUND: The Brugada syndrome is characterized by an ST segment elevation in the right precordial ECG leads and a high risk of sudden death. The ECG sign of BS is often concealed, but can be unmasked with potent sodium channel blockers. Using canine right ventricular (RV) wedge preparations, we previously developed an experimental model of BS using flecainide to depress the AP dome in RV epicardium. METHODS: Intracellular APs and a transmural ECG were simultaneously recorded from canine RV wedge preparations. RESULTS: Terfenadine (5-10 microM)-induced block of I(Ca) and I(Na) caused heterogeneous loss of the epicardial AP dome, resulting in ST segment elevation, phase 2 reentry (12/16), and spontaneous polymorphic VT/VF (6/16). Flecainide (+info)

Minimal important difference (MID) of the Dermatology Life Quality Index (DLQI): results from patients with chronic idiopathic urticaria. (45/207)

BACKGROUND: The Dermatology Quality Life Index (DLQI) has seen widespread use as a health-related quality of life measure for a variety of dermatological diseases. The purpose of this study was to estimate the minimal important difference (MID) on the DLQI for patients with chronic idiopathic urticaria (CIU). METHODS: Data from 2 Phase III clinical trials of patients (N = 476 for Study A; N = 468 for Study B) with CIU were analyzed separately to estimate the MID for the DLQI for these populations. Both distributional based and anchor based approaches were used for deriving estimates. The anchor based approach relied upon patient self assessments of pruritus severity; the distributional based approaches relied upon estimating the standard error of measurement, as well as one-half the standard deviation of the DLQI from each study. RESULTS: The distributional approaches resulted in estimates of MID ranging from 2.24 to 3.10 for the two studies. The anchor based approach resulted in estimates of 3.21 and 2.97 for the two studies. CONCLUSION: An MID for the DLQI in the range of 2.24 to 3.10 is recommended in interpreting results for patients with CIU.  (+info)

Levocetirizine has a longer duration of action on improving total nasal symptoms score than fexofenadine after single administration. (46/207)

AIMS: To compare the onset and duration of action of the new antihistamine levocetirizine with that of the second-generation antihistamine fexofenadine using the Vienna Challenge Chamber (VCC). The latter is an environment where subjects can be exposed to specific aeroallergens in controlled and reproducible conditions allowing for precise comparisons of anti-allergic drugs. METHODS: Ninety-four subjects received a single dose of levocetirizine 5 mg, fexofenadine 120 mg or placebo in a random order using a three-way cross-over design. On day 1, subjects were exposed to grass pollens (1500 grains/m(3)) in the VCC over a period of 4 h. Treatment was given 2 h after the start of challenge. On day 2, 22 h after drug intake, subjects were again exposed to pollens for 6 h. Specified symptoms were assessed by the subjects every 15 min using 5-point scales. The main efficacy parameter was the change from baseline in the Major Symptom Complex Score (MSCS = sum of rhinorrhea, sneezing, itchy nose and eyes). RESULTS: Baseline characteristics, including symptoms scores, were similar in the three study groups. During the first 2 h after drug intake both antihistamines achieved clinically relevant and significant (P < 0.001) improvements in symptom scores. Twenty-two to 24 h after drug intake, mean (SEM) MSCS reductions were: 1.9 (0.3) after placebo (baseline of 9.7), 3.8 (0.3) after fexofenadine (baseline of 9.9), and 5.1 (0.3) after levocetirizine (baseline of 9.8). Levocetirizine was significantly (P < 0.001) more effective than fexofenadine with a score difference of 1.3 (95% CI 0.7, 1.9). This was maintained until the end of the study (up to 28 h). CONCLUSIONS: A rapid onset of action in alleviating seasonal allergic rhinitis (SAR) symptoms of subjects exposed to grass pollens in the VCC was observed after levocetirizine and fexofenadine. Levocetirizine was more effective than fexofenadine at and later than 22 h after drug intake, an indication of the longer-duration of action of levocetirizine.  (+info)

Inhibition of tryptase release from human colon mast cells by histamine receptor antagonists. (47/207)

The main objective of this study was to investigate the ability of histamine receptor antagonists to modulate tryptase release from human colon mast cells induced by histamine. Enzymatically dispersed cells from human colon were challenged with histamine in the absence or presence of the histamine receptor antagonists, and the tryptase release was determined. It was found that histamine induced tryptase release from colon mast cells was inhibited by up to approximately 61.5% and 24% by the H1 histamine receptor antagonist terfenadine and the H2 histamine receptor antagonist cimetidine, respectively, when histamine and its antagonists were added to cells at the same time. The H3 histamine receptor antagonist clobenpropit had no effect on histamine induced tryptase release from colon mast cells at all concentrations tested. Preincubation of terfenadine, cimetidine or clobenpropit with cells for 20 minutes before challenging with histamine did not enhance the ability of these antihistamines to inhibit histamine induced tryptase release. Apart from terfenadine at 100 microg/ml, the antagonists themselves did not stimulate tryptase release from colon mast cells following both 15 minutes and 35 minutes incubation periods. It was concluded that H1 and H2 histamine receptor antagonists were able to inhibit histamine induced tryptase release from colon mast cells. This not only added some new data to our hypothesis of self-amplification mechanisms of mast cell degranulation, but also suggested that combining these two types of antihistamine drugs could be useful for the treatment of inflammatory bowel disease (IBD).  (+info)

Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. (48/207)

Fexofenadine hydrochloride (FEX), a second generation H(1)-receptor antagonist, is mainly eliminated from the liver into bile in unchanged form. Recent studies have shown that FEX can be accepted by human MDR1 (P-glycoprotein), OATP1A2 [organic anion-transporting polypeptide (OATP)-A, and OATP2B1 (OATP-B)] expression systems. However, other transporters responsible for the hepatic uptake of FEX have not yet been identified. In the present study, we evaluated the contribution of OATP family transporters, namely OATP1B1 (OATP2/OATP-C), OATP1B3 (OATP8), and OATP2B1 (OATP-B), to FEX uptake using transporter-expressing HEK293 (human embryonic kidney) cells. The uptake of FEX in OATP1B3-expressing cells was significantly greater than that in vector-transfected cells. On the other hand, OATP1B1- or OATP2B1-mediated uptake of FEX was not statistically significant. OATP1B3-mediated transport could be explained by a one-saturable component with a Michaelis constant (K(m)) of 108 +/- 11 microM. The inhibitory effect of FEX on the uptake of estrone-3-sulfate (E(1)S), cholecystokinin octapeptide (CCK-8), and 17beta-estradiol-17beta-d-glucuronide (E(2)17betaG) was also examined. Both OATP1B1- and OATP1B3-mediated E(2)17betaG uptake was inhibited by FEX. The K(i) values were 148 +/- 61 and 205 +/- 72 microM for OATP1B1 and OATP1B3, respectively. FEX also inhibited OATP1B3-mediated CCK-8 uptake and OATP1B1-mediated E(1)S uptake with a K(i) value of 83.3 +/- 15.3 and 257 +/- 84 microM, respectively, suggesting that FEX could not be used as a specific inhibitor for OATP1B1 and OATP1B3, although FEX was preferentially accepted by OATP1B3. In conclusion, this is, to our knowledge, the first demonstration that OATP1B3 is thought to be a major transporter involved in hepatic uptake of FEX in humans.  (+info)