Effect of acetone feeding on alcohol dehydrogenase activity in the olive fruit fly, Bactrocera oleae. (1/152)

The purpose of this study is to demonstrate a clear connection between the presence of acetone in larval diet and alcohol dehydrogenase (ADH) activity in laboratory raised populations of Bactrocera oleae. ADH activity of B. oleae is depressed in acetone-impregnated diets. At the same time the change of activity is accompanied by a change in the relative proportions of the multiple forms of ADH. The bulk of activity in the most cathodally migrating form is lost, and all the activity becomes localized in the less cathodally migrating forms of the enzyme. Moreover, ADH activity, expressed in vivo, appears to drop after exposure to acetone, as shown by the fact that larvae become less sensitive to pentenol poisoning. Our results show clear selective differences imposed by acetone on three homozygous genotypes involving the ADH alleles F, S and I in B. oleae. The directions of these differences were found to vary with the fitness component under test. Acetone treatment seems to affect developmental time and larva's viability as well as allele frequencies of ADH under artificial rearing. The effect of acetone on the maintenance of ADH polymorphism in artificially reared populations of B. oleae is further discussed.  (+info)

The period gene and allochronic reproductive isolation in Bactrocera cucurbitae. (2/152)

Clock genes that pleiotropically control circadian rhythm and the time of mating may cause allochronic reproductive isolation in the melon fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Flies with a shorter circadian period (ca. 22 h of locomotor activity rhythm) mated 5 h earlier in the day than those with a longer circadian period (ca. 30 h). Mate-choice tests demonstrated significant pre-mating isolation between populations with short and long circadian periods. Pre-mating isolation did not occur when the mating time was synchronized between the two populations by photoperiodic controls, indicating that reproductive isolation is due to variations in the time of mating and not any unidentified ethological difference between the two populations. We cloned the period (per) gene of B. cucurbitae that is homologous to the per gene in Drosophila. The relative level of per mRNA in the melon fly exhibited a robust daily fluctuation under light : dark conditions. The fluctuation of per expression under dark : dark conditions is closely correlated to the locomotor rhythm in B. cucurbitae. These results suggest that clock genes can cause reproductive isolation via the pleiotropic effect as a change of mating time.  (+info)

Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test. (3/152)

Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone.  (+info)

Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. (4/152)

The hemocyte types, in addition to total and differential hemocyte counts were studied in parasitized and unparasitized Anastrepha obliqua larvae at the beginning and at the end of the third instar. In both developmental phases, in parasitized and unparasitized larvae, prohemocytes, plasmatocytes, granulocytes, adipohemocytes, spherulocytes and oenocytoids cells were observed. Mitotic figures indicate prohemocytes as stem cells. Prohemocytes, plasmatocytes and granulocytes are the most numerous cells in the hemolymph of A. obliqua. Difference in the total number of hemocytes was observed between unparasitized and parasitized larvae at the end of the third instar, but not at the beginning.  (+info)

Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella. (5/152)

Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis.  (+info)

The likely fate of hybrids of Bactrocera tryoni and Bactrocera neohumeralis. (6/152)

Bactrocera tryoni (Froggatt) and B. neohumeralis (Hardy) (Diptera: Tephritidae) are sympatric species which hybridise readily in the laboratory yet remain distinct in the field. B. tryoni mates only at dusk and B. neohumeralis mates only during the day, but hybrids can mate at both times. We investigated the inheritance of mating time in successively backcrossed hybrid stocks to establish whether mating with either species is more likely. The progeny of all backcrosses to B. tryoni mated only at dusk. The majority of the progeny of the first and a minority of the progeny of the second backcross to B. neohumeralis also mated at dusk, but the third successive B. neohumeralis backcross produced flies that mated only during the day. This trend towards dominance of the B. tryoni trait was also reflected in a diagnostic morphological character. We discuss the possible genetic background for these phenomena and propose that unidirectional gene flow might explain how the two species remain distinct in the face of natural hybridisation.  (+info)

Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. (7/152)

Tephritid fruit flies belonging to the Rhagoletis pomonella sibling species complex are controversial because they have been proposed to diverge in sympatry (in the absence of geographic isolation) by shifting and adapting to new host plants. Here, we report evidence suggesting a surprising source of genetic variation contributing to sympatric host shifts for these flies. From DNA sequence data for three nuclear loci and mtDNA, we infer that an ancestral, hawthorn-infesting R. pomonella population became geographically subdivided into Mexican and North American isolates approximately 1.57 million years ago. Episodes of gene flow from Mexico subsequently infused the North American population with inversion polymorphism affecting key diapause traits, forming adaptive clines. Sometime later (perhaps +/-1 million years), diapause variation in the latitudinal clines appears to have aided North American flies in adapting to a variety of plants with differing fruiting times, helping to spawn several new taxa. Thus, important raw genetic material facilitating the adaptive radiation of R. pomonella originated in a different time and place than the proximate ecological host shifts triggering sympatric divergence.  (+info)

Genetic and molecular markers of the Queensland fruit fly, Bactrocera tryoni. (8/152)

Twenty-six microsatellite markers, along with two restriction fragment length polymorphism (RFLP) markers and three morphological markers, have been mapped to five linkage groups, corresponding to the five autosomes of the Queensland fruit fly, Bactrocera tryoni. All these molecular and genetic markers were genotyped in three-generation pedigrees. Eight molecular markers were also localized to the salivary gland polytene chromosomes by in situ hybridization. This provides a substantial starting point for an integrated genetic and physical map of B. tryoni.  (+info)