Biological evaluation of analogues of an insect neuropeptide proctolin. (41/140)

Continuing our studies on proctolin (Arg-Tyr-Leu-Pro-Thr) we performed the synthesis and biological evaluation of 52 analogues substituted in position 2, 3, 4, and 5 of the peptide chain. The peptides were bioassayed for cardiotropic activity in vitro on Tenebrio molitor and myotropic activity on foregut of Schistocerca gregaria. Twenty analogues retained 20-80% of proctolin activity.  (+info)

The mechanism of action of the antidiuretic peptide Tenmo ADFa in Malpighian tubules of Aedes aegypti. (42/140)

The mechanism of action of Tenebrio molitor antidiuretic factor 'a' (Tenmo ADFa) was explored in isolated Malpighian tubules of Aedes aegypti. In the Ramsay assay of fluid secretion, Tenmo ADFa (10(-9) mol l(-1)) significantly inhibited the rate of fluid secretion from 0.94 nl min(-1) to 0.44 nl min(-1) without significant effects on the concentrations of Na+, K+ and Cl- in secreted fluid. In isolated perfused tubules, Tenmo ADFa had no effect on the transepithelial voltage (Vt) and resistance (Rt). In principal cells of the tubule, Tenmo ADFa had no effect on the basolateral membrane voltage (Vbl) and the input resistance of principal cells (Rpc). Tenmo ADFa significantly increased the intracellular concentration of cyclic guanosine monophosphate (cGMP) from 2.9 micromol l(-1) (control) to 7.4 micromol l(-1). A peritubular [cGMP] of 20 micromol l(-1) duplicated the antidiuretic effects of Tenmo ADFa without inducing electrophysiological effects. In contrast, 500 micromol l(-1) cGMP significantly depolarized V(bl), hyperpolarized Vt, and reduced Rt and Rpc, without increasing antidiuretic potency beyond that of 20 micromol l(-1) cGMP. A plot of peritubular cGMP concentration vs Vbl revealed a steep dose-response between 300 micromol l(-1) and 700 micromol l(-1) with an EC50 of 468 micromol l(-1). These observations suggest a receptor- and cGMP-mediated mechanism of action of Tenmo ADFa. Tenmo ADFa and physiological concentrations of cGMP (< 20 micromol l(-1)) reduce the rate of isosmotic fluid secretion by quenching electroneutral transport systems. The inhibition reveals that as much as 50% of the normal secretory solute and water flux can stem from electrically silent mechanisms in this highly electrogenic epithelium.  (+info)

Amino acid sequence of Sp23, a structural protein of the spermatophore of the mealworm beetle, Tenebrio molitor. (43/140)

In this paper we present the amino acid sequence of Sp23, a structural protein of the spermatophore of the mealworm beetle (Tenebrio molitor). This is the first report of the primary structure of a spermatophorin. The protein is rich in proline (24%), relatively rich in tyrosine (9%) and glutamine (10%), and does not contain sulfur-containing amino acids. In the carboxyl-terminal half of the protein a peptide motif is repeated which is similar to a repetitive motif in a group of dipteran chorion proteins.  (+info)

Systematic size study of an insect antifreeze protein and its interaction with ice. (44/140)

Because of their remarkable ability to depress the freezing point of aqueous solutions, antifreeze proteins (AFPs) play a critical role in helping many organisms survive subzero temperatures. The beta-helical insect AFP structures solved to date, consisting of multiple repeating circular loops or coils, are perhaps the most regular protein structures discovered thus far. Taking an exceptional advantage of the unusually high structural regularity of insect AFPs, we have employed both semiempirical and quantum mechanics computational approaches to systematically investigate the relationship between the number of AFP coils and the AFP-ice interaction energy, an indicator of antifreeze activity. We generated a series of AFP models with varying numbers of 12-residue coils (sequence TCTxSxxCxxAx) and calculated their interaction energies with ice. Using several independent computational methods, we found that the AFP-ice interaction energy increased as the number of coils increased, until an upper bound was reached. The increase of interaction energy was significant for each of the first five coils, and there was a clear synergism that gradually diminished and even decreased with further increase of the number of coils. Our results are in excellent agreement with the recently reported experimental observations.  (+info)

Immune function responds to selection for cuticular colour in Tenebrio molitor. (45/140)

Cuticular colour in the mealworm beetle (Tenebrio molitor) is a quantitative trait, varying from tan to black. Population level variation in cuticular colour has been linked to pathogen resistance in this species and in several other insects: darker individuals are more resistant to pathogens. Given that cuticular colour has a heritable component, we have taken an experimental evolution approach: we selected 10 lines for black and 10 lines for tan adult cuticular phenotypes over at least six generations and measured the correlated responses to selection in a range of immune effector systems. Our results show that two immune parameters related to resistance (haemocyte density and pre-immune challenge activity of phenoloxidase (PO)) were significantly higher in selection lines of black beetles compared to tan lines. This may help to explain increased resistance to pathogens in darker individuals. Cuticular colour is dependent upon melanin production, which requires the enzyme PO that is present in its inactive form inside haemocytes. Thus, the observed correlated response to selection upon cuticular colour and immune variables probably results from these traits' shared dependence on melanin production.  (+info)

Digestive proteinases of yellow mealworm (Tenebrio molitor) larvae: purification and characterization of a trypsin-like proteinase. (46/140)

A new trypsin-like proteinase was purified to homogeneity from the posterior midgut of Tenebrio molitor larvae by ion-exchange chromatography on DEAE-Sephadex A-50 and gel filtration on Superdex-75. The isolated enzyme had molecular mass of 25.5 kD and pI 7.4. The enzyme was also characterized by temperature optimum at 55 degrees C, pH optimum at 8.5, and K(m) value of 0.04 mM (for hydrolysis of Bz-Arg-pNA). According to inhibitor analysis the enzyme is a trypsin-like serine proteinase stable within the pH range of 5.0-9.5. The enzyme hydrolyzes peptide bonds formed by Arg or Lys residues in the P1 position with a preference for relatively long peptide substrates. The N-terminal amino acid sequence, IVGGSSISISSVPXQIXLQY, shares 50-72% identity with other insect trypsin-like proteinases, and 44-50% identity to mammalian trypsins. The isolated enzyme is sensitive to inhibition by plant proteinase inhibitors and it can serve as a suitable target for control of digestion in this stored product pest.  (+info)

A novel 43-kDa protein as a negative regulatory component of phenoloxidase-induced melanin synthesis. (47/140)

The melanization reaction induced by activated phenoloxidase in arthropods is important in the multiple host defense innate immune reactions, leading to the sequestration and killing of invading microorganisms. This reaction ought to be tightly controlled because excessive formation of quinones and systemic hypermelanization are deleterious to the hosts, suggesting that a negative regulator(s) of melanin synthesis may exist in hemolymph. Here, we report the purification and cloning of a cDNA of a novel 43-kDa protein, from the meal-worm Tenebrio molitor, which functions as a melanization-inhibiting protein (MIP). The deduced amino acid sequence of 352 residues has no homology to known sequences in protein data bases. When the concentration of the 43-kDa protein was examined by Western blot analysis in a melanin-induced hemolymph prepared by injection of Candida albicans into T. molitor larvae, the 43-kDa protein specifically decreased in the melanin-induced hemolymph compared with control hemolymph. Recombinant MIP expressed in a baculovirus system had an inhibitory effect on melanin synthesis in vitro. RNA interference using a synthetic 445-mer double-stranded RNA of MIP injected into Tenebrio larvae showed that melanin synthesis was markedly induced. These results suggest that this 43-kDa MIP inhibits the formation of melanin and thus is a modulator of the melanization reaction to prevent the insect from excessive melanin synthesis in places where it should be inappropriate.  (+info)

Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites? (48/140)

The antifreeze protein (AFP) reduces the growth rates of the ice crystal facets. In that process the ice morphology undergoes a modification. An AFP-induced surface pinning mechanism, through matching of periodic bond chains in two dimensions, enables two-dimensional regular ice-binding surfaces (IBSs) of the insect AFPs to engage a certain class of ice surfaces, called primary surfaces. They are kinetically stable surfaces with unambiguous and predetermined orientations. In this work, the orientations and molecular compositions of the primary ice surfaces that undergo growth rate reduction by the insect AFPs are obtained from first principles. Besides the basal face and primary prism, the ice surfaces engaged by insect AFPs include the specific ice pyramids produced by the insect AFP Tenebrio molitor (TmAFP). TmAFP-induced pyramids differ fundamentally from the ice pyramids produced by fish AFPs and antifreeze protein glycoproteins (AFPGs) as regards the ice surface configurations and the mode of interaction with the protein IBS. The molecular compositions of the TmAFP-induced pyramids are strongly bonded in two dimensions and have the constant face indices (101). In contrast, the molecular composition of the ice pyramids produced by fish AFPs and AFPGs are strongly bonded in only one direction and have variable face indices (h 0 l), none of which equal (101). The thus far puzzling behavior of the TmAFP in producing pyramidal crystallites is fully explained in agreement with experiment.  (+info)