Loading...
(1/103) Regional differences in fibre type composition in the human temporalis muscle.

Anatomical and electromyographic studies point to regional differences in function in the human temporalis muscle. During chewing and biting the anterior portions of the muscle are in general more intensively activated and they are capable of producing larger forces than the posterior portions. It was hypothetised that this heterogeneity in function is reflected in the fibre type composition of the muscle. The composition and surface area of different fibre types in various anteroposterior portions of the temporalis muscle were investigated in 7 cadavers employing immunohistochemistry with a panel of monoclonal antibodies against different isoforms of myosin heavy chain. Pure slow muscle fibres, type I, differed strongly in number across the muscle. In the most posterior portion of the muscle there were 24% type I fibres, in the intermediate portion 57%, and in the most anterior portion 46%. The mean fibre cross-sectional area (m-fcsa) of type I fibres was 1849 microm2, which did not differ significantly across the muscle. The proportion of pure fast muscle fibres, type IIA and IIX, remained more or less constant throughout the muscle at 13% and 11% respectively; their m-fcsa was 1309 microm2 and 1206 microm2, respectively, which did not differ significantly throughout the muscle. Pure type IIB fibres were not found. The relative proportion of hybrid fibres was 31% and did not differ significantly among the muscle portions. Fibre types I + IIA and cardiac alpha + I + IIA were the most abundant hybrid fibre types. In addition, 5% of the type I fibres had an additional myosin isoform which has only recently been described by means of electrophoresis and was named Ia. In the present study they were denoted as hybrid type I + Ia muscle fibres. It is concluded that intramuscular differences in type I fibre distribution are in accordance with regional differences in muscle function.  (+info)

(2/103) Neuroimaging of a wooden foreign body retained for 5 months in the temporalis muscle following penetrating trauma with a chopstick--case report.

A 48-year-old female was stabbed by her husband with a chopstick made of wood in the left temporal region during a quarrel. She suffered laceration of the left temporal scalp. At initial examination, she concealed the assault with a chopstick. Radiography showed no abnormality, so the wound was sutured. One month after the injury, a painless subcutaneous mass appeared in the left temporal region which grew rapidly for 3 months. She was then admitted to our department. Computed tomography (CT) on admission showed a hyperdense area at the center of the mass. This area was hypointense on both T1- and T2-weighted magnetic resonance (MR) images. Temporalis muscle tumor with accompanying central necrosis, old hematoma, and inflammatory granuloma was considered. The mass was totally resected for cosmetic purposes and was found to be wooden foreign body granuloma. High density on CT and hypointensity on both T1- and T2-weighted MR images are characteristic of a chronically retained wooden foreign body in the living body and are useful for detecting wooden foreign bodies in the chronic granulomatous phase.  (+info)

(3/103) Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism.

The levels of amyloid-beta40 (Abeta40) and Abeta42 peptides were quantified in temporalis muscles and brain of neuropathologically diagnosed Alzheimer disease (AD) and of nondemented individuals. This was achieved by using a novel analytical approach consisting of a combination of fast-performance liquid chromatographic (FPLC) size exclusion chromatography developed under denaturing conditions and europium immunoassay on the 4.0- to 4.5-kd fractions. In the temporalis muscles of the AD and nondemented control groups, the average values for Abeta42 were 15.7 ng/g and 10.2 ng/g (P = 0.010), and for Abeta40 they were 37.8 ng/g and 29.8 ng/g (P = 0.067), respectively. Multiple regression analyses of the AD and control combined populations indicated that 1) muscle Abeta40 and muscle Abeta42 levels were correlated with each other (P < 0.001), 2) muscle Abeta40 levels were positively correlated with age (P = 0. 036), and 3) muscle Abeta42 levels were positively correlated with Braak stage (P = 0.042). Other forms of the Abeta peptide were discovered by mass spectrometry, revealing the presence of Abeta starting at residues 1, 6, 7, 9, 10, and 11 and ending at residues 40, 42, 44, 45, and 46. It is possible that in AD the skeletal muscle may contribute to the elevated plasma pool of Abeta and thus indirectly to the amyloid deposits of the brain parenchyma and cerebral blood vessels. The increased levels of Abeta in the temporalis muscles of AD patients suggest that alterations in AbetaPP and Abeta metabolism may be manifested in peripheral tissues.  (+info)

(4/103) EMG activities of two heads of the human lateral pterygoid muscle in relation to mandibular condyle movement and biting force.

Electromyographic (EMG) activities of the superior (SUP) and inferior heads (INF) of the lateral pterygoid muscle (LPT) were recorded in humans during voluntary stepwise changes in biting force and jaw position that were adopted to exclude the effects of acceleration and velocity of jaw movements on the muscle activity. The SUP behaved like a jaw-closing muscle and showed characteristic activity in relation to the biting force. It showed a considerable amount of background activity (5-32% of the maximum) even in the intercuspal position without teeth clenching and reached a nearly maximum activity at relatively lower biting-force levels than the jaw-closing muscles during increment of the biting force. Stretch reflexes were found in the SUP, the function of which could be to stabilize the condyle against the biting force that pulls the condyle posteriorly. This notion was verified by examining the biomechanics on the temporomandibular joint. The complex movements of the mandibular condyle in a sagittal plane were decomposed into displacement in the anteroposterior direction (Ac) and angle of rotation (RAc) around a kinesiological specific point on the condyle. In relation to Ac, each head of the LPT showed quite a similar behavior to each other in all types of jaw movements across all subjects. Working ranges of the muscle activities were almost constant (Ac <3 mm for the SUP and Ac >3 mm for the INF). The amount of EMG activity of the SUP changed in inverse proportion to Ac showing a hyperbola-like relation, whereas that of the INF changed rather linearly. The EMG amplitude of the SUP showed a quasilinear inverse relation with RAc in the hinge movement during which the condyle rotated with no movement in the anteroposterior direction. This finding suggests that the SUP controls the angular relationship between the articular disk and the condyle. On the other hand, the position of the disk in relation to the maxilla, not to the condyle, is controlled indirectly by the INF because the disk is attached to the condyle by tendinous ligaments.  (+info)

(5/103) Positional relationships between the masticatory muscles and their innervating nerves with special reference to the lateral pterygoid and the midmedial and discotemporal muscle bundles of temporalis.

For an accurate assessment of jaw movement, it is crucial to understand the comprehensive formation of the masticatory muscles with special reference to the relationship to the disc of the temporomandibular joint. Detailed dissection was performed on 26 head halves of 14 Japanese cadavers in order to obtain precise anatomical information of the positional relationships between the masticatory muscles and the branches of the mandibular nerve. After complete removal of the bony elements, the midmedial muscle bundle in all specimens and the discotemporal muscle bundle in 6 specimens, derivatives of the temporalis, which insert into the disc were observed. On the anterior area of the articular capsule and the disc of the temporomandibular joint, the upper head of the lateral pterygoid, the midmedial muscle bundle of temporalis and the discotemporal bundle of temporalis were attached mediolaterally, and in 3 specimens the posterosuperior margin of the zygomaticomandibularis was attached to the anterolateral area of the disc. It is suggested that these muscles and muscle bundles contribute to various mandibular movements. Although various patterns of the positional relationships between the muscles and muscle bundles and the their innervating nerves are observed in the present study, relative positional relationships of the muscles and muscle bundles and of nerves of the mandibular nerve are consistent. A possible scheme of the developmental formation of the masticatory muscles based on the findings of the positional relationships between the muscles and the nerves is presented.  (+info)

(6/103) Influence on myoelectric discharges of anteroposterior displacement of the mandibular position near the tapping point.

The purpose of this study was to examine the influence that the anteroposterior mandibular displacement near the tapping point exerts on the myoelectric activity of masseter and temporal muscles at a specific occluding force and to clarify the possibility of judging the mandibular position by measuring the amount of myoelectric discharge. Eight dentulous subjects were selected for the study. Surface electrodes were placed over the anterior, middle and posterior regions of the masseter muscle and over the anterior, middle and posterior bundles of the temporal muscle. Independently of the measurement region, the changes in the masseter and temporal muscle myoelectric activity which accompanied the anteroposterior mandibular displacement, were low. Moreover, when the mandible was displaced anteroposteriorly, the total amount of the myoelectrical discharge from all the recorded places, as well as the amounts of myoelectrical discharge over the middle part of the masseter muscle and the anterior bundle of the temporal muscle reached their lowest values in those mandibular positions which included the tapping point in less than half of the subjects. Therefore, this study indicates that the possibility of judging anteroposterior mandibular displacement by masseter and temporal muscle electromyography is quite low.  (+info)

(7/103) Excitability of the human trigeminal motoneuronal pool and interactions with other brainstem reflex pathways.

We studied the properties of motoneurones and Ia-motoneuronal connections in the human trigeminal system, and their functional interactions with other brainstem reflex pathways mediated by non-muscular (Abeta) afferents. With surface EMG recordings we tested the recovery cycles of the heteronymous H-reflex in the temporalis muscle and the homonymous silent period in the masseter muscle both elicited by stimulation of the masseteric nerve at the infratemporal fossa in nine healthy subjects. In four subjects single motor-unit responses were recorded from the temporalis muscle. In six subjects we also tested the effect of the stimulus to the mental nerve on the temporalis H-reflex and, conversely, the effect of Ia input (stimulus to the masseteric nerve) on the R1 component of the blink reflex in the orbicularis oculi muscle. The recovery cycle of the H-reflex showed a suppression peaking at the 5-20 ms interval; conversely the time course of the masseteric silent period was facilitated at comparable intervals. The inhibition of the test H-reflex was inversely related to the level of background voluntary contraction. Single motor units were unable to fire consistently in response to the test stimulus at intervals shorter than 50 ms. Mental nerve stimulation strongly depressed the H-reflex. The time course of this inhibition coincided with the EMG inhibition elicited by mental nerve stimulation during voluntary contraction. The trigeminal Ia input facilitated the R1 component of the blink reflex when the supraorbital test stimulation preceded the masseteric conditioning stimulation by 2 ms. We conclude that the time course of the recovery cycle of the heteronymous H-reflex in the temporalis muscle reflects the after-hyperpolarization potential (AHP) of trigeminal motoneurones, and that the Ia trigeminal input is integrated with other brainstem reflexes.  (+info)

(8/103) The course of the buccal nerve: relationships with the temporalis muscle during the prenatal period.

The aim of this study was to describe the course of the buccal nerve and its relationships with the temporalis muscle during the prenatal period. Serial sections of 90 human fetal specimens ranging from 9 to 17 wk development were studied by light microscopy. Each fetal specimen was studied on both right and left sides, making a total of 180 cases for study. A 3-D reconstruction of the region analysed in one of the specimens was made. In 89 cases the buccal nerve was located medial to the temporalis muscle; in 73 cases it penetrated the muscle; in 15 cases it lay in a canal formed by the muscle fibres and was covered by fascia, and finally, in 3 cases it was a branch of the inferior alveolar nerve. The study has revealed that in a large number of cases the buccal nerve maintains an intimate association with the temporalis muscle.  (+info)