Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. (73/4834)

To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.  (+info)

Telomerase activity in germ cell cancers and mature teratomas. (74/4834)

BACKGROUND: An inverse relationship has been reported between the presence of telomerase enzymatic activity and the induction of differentiation in human tumor cell lines. Male germ cell tumors represent an attractive clinical model to assess this relationship further because high telomerase activity is present in normal germ cell progenitors and in embryonal carcinomas that can differentiate into mature teratomas. To investigate how telomerase activity and the differentiation state of germ cell tumors are related, telomerase activities and telomere lengths were measured in benign testicular tissues, germ cell cancers, and mature or immature teratomas. METHODS: By use of a modified telomeric repeat amplification protocol (TRAP) assay, telomerase activity was measured in four specimens of benign testicular tissue, in 27 germ cell cancers, in seven mature teratomas, and in one immature teratoma. Telomere lengths were measured in all specimens by restriction digestion of genomic DNA and Southern blot hybridization analysis. Associations between telomerase activity and tissue histopathology were assessed with two-sided Fisher's exact tests. RESULTS: Telomerase activity was detected in all examined germ cell cancers and in the benign testicular tissue specimens. In marked contrast, telomerase activity was not detected in any mature teratoma (P<.0001). Very long telomeres were detected in some mature teratomas, consistent with telomerase repression as a late event in teratoma formation. The immature teratoma, with malignant transformation, had high telomerase activity. CONCLUSION: Telomerase is active in germ cell cancers and repressed in mature teratomas. The absence of telomerase activity may contribute to the limited proliferative capacity of mature teratomas. These findings support the existence of an inverse relationship between telomerase activity and the differentiation state of clinical germ cell tumors.  (+info)

Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. (75/4834)

Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.  (+info)

Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. (76/4834)

To localize the MHC-linked diabetogenic genes in the nonobese diabetic (NOD) mouse, a recombinational hotspot from the B10.A(R209) mouse was introduced to the region between the MHC class I K and class II A of the NOD mouse with the recombinational site centromeric to the Lmp2/Tap1 complex by breeding the two strains. Replacement of the NOD region centromeric to the recombinational site with the same region in R209 mice prevented the development of diabetes (from 71 to 3%) and insulitis (from 61 to 15%) in the N7 intra-MHC recombinant NOD mice. Similarly, the replacement of the NOD class II A, E and class I D region with the same region in R209 mice prevented the diseases (diabetes, from 71 to 0%; insulitis, from 61 to 3%). In addition to the MHC class II genes, there are at least two MHC-linked diabetogenic genes in the region centromeric to Lmp2.  (+info)

The plasticity of human telomeres demonstrated by a hypervariable telomere repeat array that is located on some copies of 16p and 16q. (77/4834)

Human telomeres are composed of tandem arrays of TTAGGG repeats with many variant repeats at the proximal ends. Comparison of the interspersion of variant and TTAGGG repeats between alleles can be used to study telomere instability, but the difficulty in identifying chromosome-specific sequences close to the start of autosomal telomeres has hampered such investigations. A chromosome end, including a telomere and adjacent sequence, that is polymorphic for its presence or absence in unrelated individuals has been identified. The telomere-adjacent DNA shows strong homology (92-99%) to sequences, including two expressed sequence tags, that are usually located in subterminal regions of human chromosomes but not adjacent to telomeres. Since this chromosome end arose, it has relocated at least once. In Caucasians, it forms the telomere of approximately 6% of 16q and 2% of 16p chromosome arms. The mechanism of relocation is unknown but must have involved the telomere-adjacent DNA rather than the telomere itself, as copies on 16p and 16q share the same telomere-adjacent sequence. The interspersion patterns of TTAGGG with TGAGGG, TTGGGG and non-amplifying repeat sequences revealed extensive allelic variation, such that 47 different alleles were observed among the 50 alleles mapped. Closely related alleles differ by small changes in copy number at blocks of adjacent like repeats, as seen at the Xp/Yp pseudoautosomal telomere. Such differences are compatible with a model in which the majority of mutations arise by intra-allelic mechanisms, in individuals hemizygous for a single copy of the chromosome end.  (+info)

Phosphorylated proteins are involved in sister-chromatid arm cohesion during meiosis I. (78/4834)

Sister-chromatid arm cohesion is lost during the metaphase I/anaphase I transition to allow homologue separation. To obtain needed information on this process we have analysed in grasshopper bivalents the sequential release of arm cohesion in relation to the behaviour of chromatid axes. Results show that sister axes are associated during early metaphase I but separate during late metaphase I leading to a concomitant change of chromosome structure that implies the loss of sister-kinetochore cohesion. Afterwards, homologues initiate their separation asynchronously depending on their size, and number and position of chiasmata. In all bivalents thin chromatin strands at the telomeres appeared as the last point of contact between sister chromatids. Additionally, we have analysed the participation of phosphoproteins recognised by the MPM-2 monoclonal antibody against mitotic phosphoproteins in arm cohesion in bivalents and two different kinds of univalents. Results show the absence of MPM-2 phosphoproteins at the interchromatid domain in mitotic chromosomes and meiotic univalents, but their presence in metaphase I bivalents. These phosphoproteins are lost at the onset of anaphase I. Taken together, these data have prompted us to propose a 'working' model for the release of arm cohesion during meiosis I. The model suggests that MPM-2 phosphoproteins may act as cohesive proteins associating sister axes. Their modification, once all bivalents are correctly aligned at the metaphase plate, would trigger a change of chromosome structure and the sequential release of sister-kinetochore, arm, and telomere cohesions.  (+info)

Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. (79/4834)

In the yeast Saccharomyces cerevisiae, chromosomes terminate with a repetitive sequence [poly(TG(1-3))] 350 to 500 bp in length. Strains with a mutation of TEL1, a homolog of the human gene (ATM) mutated in patients with ataxia telangiectasia, have short but stable telomeric repeats. Mutations of TLC1 (encoding the RNA subunit of telomerase) result in strains that have continually shortening telomeres and a gradual loss of cell viability; survivors of senescence arise as a consequence of a Rad52p-dependent recombination events that amplify telomeric and subtelomeric repeats. We show that a mutation in MEC1 (a gene related in sequence to TEL1 and ATM) reduces telomere length and that tel1 mec1 double mutant strains have a senescent phenotype similar to that found in tlc1 strains. As observed in tlc1 strains, survivors of senescence in the tel1 mec1 strains occur by a Rad52p-dependent amplification of telomeric and subtelomeric repeats. In addition, we find that strains with both tel1 and tlc1 mutations have a delayed loss of cell viability compared to strains with the single tlc1 mutation. This result argues that the role of Tel1p in telomere maintenance is not solely a direct activation of telomerase.  (+info)

The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). (80/4834)

The DNA sequence d(G(4)T(4)G(4)) [Oxy-1.5] consists of 1.5 units of the repeat in telomeres of Oxytricha nova and has been shown by NMR and X-ray crystallographic analysis to form a dimeric quadruplex structure with four guanine-quartets. However, the structure reported in the X-ray study has a fundamentally different conformation and folding topology compared to the solution structure. In order to elucidate the possible role of different counterions in this discrepancy and to investigate the conformational effects and dynamics of ion binding to G-quadruplex DNA, we compare results from further experiments using a variety of counterions, namely K(+), Na(+)and NH(4)(+). A detailed structure determination of Oxy-1.5 in solution in the presence of K(+)shows the same folding topology as previously reported with the same molecule in the presence of Na(+). Both conformations are symmetric dimeric quadruplexes with T(4)loops which span the diagonal of the end quartets. The stack of quartets shows only small differences in the presence of K(+)versus Na(+)counterions, but the T(4)loops adopt notably distinguishable conformations. Dynamic NMR analysis of the spectra of Oxy-1.5 in mixed Na(+)/K(+)solution reveals that there are at least three K(+)binding sites. Additional experiments in the presence of NH(4)(+)reveal the same topology and loop conformation as in the K(+)form and allow the direct localization of three central ions in the stack of quartets and further show that there are no specific NH(4)(+)binding sites in the T(4)loop. The location of bound NH(4)(+)with respect to the expected coordination sites for Na(+)binding provides a rationale for the difference observed for the structure of the T(4)loop in the Na(+)form, with respect to that observed for the K(+)and NH(4)(+)forms.  (+info)