Suppression of telomerase reverse transcriptase (hTERT) expression in differentiated HL-60 cells: regulatory mechanisms. (49/3684)

Telomerase activity, associated with cellular immortalization and tumorigenesis, is suppressed during terminal differentiation of HL-60 promyelocytic leukaemic cells. However, it is poorly understood how telomerase activity is regulated in differentiated HL-60 cells. In the present study, we demonstrate that the down-regulation of telomerase reverse transcriptase (hTERT) expression, the catalytic subunit, occurs prior to the suppression of telomerase activity in differentiated HL-60 cells. In contrast, the expression of telomerase RNA template (hTR) and telomerase associated protein (TP1) is not reduced. This down-regulation of hTERT expression is achieved through inhibition of gene transcription, in which process new protein synthesis is required. Moreover, the rapid down-regulation of hTERT expression followed by the inhibition of telomerase activity is a specific component of the differentiation programme and not simply a consequence of cell cycle arrest. Serum-deprivation of HL-60 cells causes cell cycle arrest without differentiation and this does not result in a significant reduction in hTERT mRNA levels within the first 24 h. Our findings suggest that hTERT expression is stringently controlled at transcriptional level in HL-60 cells. The downregulation of hTERT expression in the HL-60 cell differentiation model may represent a general regulatory mechanism through which telomerase becomes repressed during development and differentiation of human somatic cells.  (+info)

Human telomerase reverse transcriptase (hTERT) gene expression in thyroid neoplasms. (50/3684)

Ten percent of fine-needle aspirations (FNAs) of the thyroid are deemed "indeterminate" or "suspicious" for malignancy by the cytopathologist, but most of these lesions are benign. Therefore, additional markers of malignancy may prove to be a useful adjunct. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been found to be reactivated in immortalized cell lines. Reverse transcription-PCR of the hTERT gene revealed expression in 15 (79%) of 19 malignant thyroid neoplasms, including 6 of 6 follicular carcinomas and 9 of 13 papillary carcinomas. In contrast, hTERT gene expression was detected in only 5 (28%) of 18 benign thyroid nodules, including 2 of 7 follicular adenomas and 3 of 11 hyperplastic nodules. All five benign thyroids exhibiting hTERT gene expression had lymphocytic thyroiditis. No normal thyroids exhibited hTERT gene expression. Telomerase enzyme activity was examined in all 37 nodules and was found to correlate with hTERT gene expression in 35 (95%) nodules. The two cases in which telomerase activity and hTERT expression results were discrepant were in two papillary carcinomas that were telomerase activity negative and hTERT positive. Finally, we have demonstrated that hTERT gene expression can be measured in in vivo FNA samples. These results suggest that hTERT expression may be more accurate than telomerase activity in distinguishing benign from malignant and may be measured in FNA samples from suspicious thyroid lesions.  (+info)

Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors: correlation with grade, histology, and proliferative activity. (51/3684)

Telomerase activity (TA) is detected in most human cancers but, with few exceptions, not in normal somatic cells. Little is known about TA in soft tissue tumors. We have examined a series of benign and malignant soft tissue tumors for TA using the telomerase repeat amplification protocol assay. Analysis of the expression of the human telomerase reverse transcriptase was also carried out using RT-PCR. TA was undetectable in benign lesions (15 of 15) and low-grade sarcomas (6 of 6) and was detectable in 50% (19 of 38) of intermediate-/high-grade sarcomas. Although the presence of TA in soft tissue tumors is synonymous with malignancy, it is neither a reliable method in making the distinction between reactive/benign and malignant (especially low-grade) lesions nor a reliable marker of tumor aggressiveness. Leiomyosarcomas and storiform/pleomorphic malignant fibrous histiocytomas rarely showed TA, irrespective of their grade. A strong correlation between human telomerase reverse transcriptase mRNA expression and TA was observed, supporting the close relationship between both parameters. No significant relationship was observed between proliferative activity (as assessed by MIB-1 immunolabeling) and TA. We verified that the absence of telomerase expression was not due to the presence of telomerase inhibitors and therefore alternative mechanism(s) for cell immortalization, yet to be determined, seem to be involved in the development and/or maintenance of some soft tissue sarcomas.  (+info)

The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. (52/3684)

The discovery of tumor-associated antigens (TAA) in certain human malignancies has prompted renewed efforts to develop antigen-specific immunotherapy of cancer. However, most TAA described thus far are expressed in one or a few tumor types, and, among patients with these types of tumors, TAA expression is not universal. Here, we characterize the telomerase catalytic subunit (hTERT) as a widely expressed TAA capable of triggering antitumor cytotoxic T lymphocyte (CTL) responses. More than 85% of human cancers exhibit strong telomerase activity, but normal adult tissues, with few exceptions, do not. In a human system, CD8+ CTL specific for an hTERT peptide and restricted to MHC HLA-A2 lysed hTERT+ tumors from multiple histologies. These findings identify hTERT as a potentially important and widely applicable target for anticancer immunotherapeutic strategies.  (+info)

Telomerase activity in melanoma and non-melanoma skin cancer. (53/3684)

Telomeres are specialized structures consisting of repeat arrays of TTAGGGn located at the ends of chromosomes. They are essential for chromosome stability and, in the majority of normal somatic cells, telomeres shorten with each cell division. Most immortalized cell lines and tumours reactivate telomerase to stabilize the shortening chromosomes. Telomerase activation is regarded as a central step in carcinogenesis and, here, we demonstrate telomerase activation in premalignant skin lesions and also in all forms of skin cancer. Telomerase activation in normal skin was a rare event, and among 16 samples of normal skin (one with a history of chronic sun exposure) 12.5% (2 out of 16) exhibited telomerase activity. One out of 16 (6.25%) benign proliferative lesions, including viral and seborrhoeic wart samples, had telomerase activity. In premalignant actinic keratoses and Bowen's disease, 42% (11 out of 26) of samples exhibited telomerase activity. In the basal cell carcinoma and cutaneous malignant melanoma (CMM) lesions, telomerase was activated in 77% (10 out of 13) and 69% (22 out of 32) respectively. However, only 25% (3 out of 12) of squamous cell carcinomas (SCC) had telomerase activity. With the exception of one SCC sample, telomerase activity in a positive control cell line derived from a fibrosarcoma (HT1080) was not inhibited when mixed with the telomerase-negative SCC or CMM extracts, indicating that, overall, Taq polymerase and telomerase inhibitors were not responsible for the negative results. Mean telomere hybridizing restriction fragment (TRF) analysis was performed in a number of telomerase-positive and -negative samples and, although a broad range of TRF sizes ranging from 3.6 to 17 kb was observed, a relationship between telomerase status and TRF size was not found.  (+info)

Associations among telomerase activity, p53 protein overexpression, and genetic instability in lung cancer. (54/3684)

Genomic instability is a driving force for tumorigenesis. p53 and telomerase play central roles in maintaining genomic integrity. The purpose of this study was to assess the associations among p53 protein overexpression, telomerase activity and genetic instability in lung cancer. We found that telomerase activity was detectable in 80% of 100 lung tumours, but only 7.7% of 91 paired adjacent normal tissues. p53 protein was overexpressed in 63% of the tumours but only 2% of the normal tissues. p53 was overexpressed in 56 of the 80 (70%) tumour tissues with telomerase activity but only seven of the 20 (35%) without telomerase activity. p53 protein overexpression carried a 6.7-fold (95% confidence interval, 1.7-27.7) increased risk for positive telomerase activity after adjustment by age, sex, ethnicity, smoking status and family history of lung cancer. The mean in vitro bleomycin-induced breaks per cell (a marker of cancer susceptibility) was significantly higher (0.92) for patients who overexpressed p53 in lung tumour tissue than that for patients with no detectable p53 expression in lung tumour tissue (0.65). Our data suggest that p53 protein overexpression may be common in individuals genetically susceptible to carcinogen exposure. p53 status may be related to telomerase expression.  (+info)

Auxin induction of cell cycle regulated activity of tobacco telomerase. (55/3684)

Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  (+info)

Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. (56/3684)

We have previously postulated that granulosa cells of developing follicles arise from a population of stem cells. Stem cells and cancer cells can divide indefinitely partly because they express telomerase. Telomerase is a ribonucleoprotein enzyme that repairs the ends of telomeres that otherwise shorten progressively upon each successive cell division. In this study we carried out cell cycle analyses and examined telomerase expression to examine our hypothesis. Preantral (60-100 microm) and small (1 mm) follicles, as well as granulosa cells from medium-sized (3 mm) and large (6-8 mm) follicles, were isolated. Cell cycle analyses and expression of Ki-67, a cell cycle-related protein, were undertaken on follicles of each size (n = 3) by flow cytometry; 12% to 16% of granulosa cells in all follicles were in the S phase, and less than 2% were in the G(2)/M phase. Telomerase activity (n = 3) was highest in the small preantral follicles, declining at the 1-mm stage and even further at the 3-mm stage. In situ hybridization histochemistry was carried out on bovine ovaries, and telomerase RNA was detected in the granulosa cells of growing follicles but not primordial follicles. Two major patterns of staining were observed in the membrana granulosa of antral follicles: staining in the middle and antral layers, and staining in the middle and basal layers. No staining was detected in oocytes. Our results strongly support our hypothesis that granulosa cells arise from a population of stem cells.  (+info)