The perceived intensity of caffeine aftertaste: tasters versus nontasters. (1/198)

The length and intensity of the aftertaste of caffeine was measured in groups of tasters and nontasters in order to determine if any differential information could be provided by aftertaste perception. Results indicate that a period of 4 min is sufficient to see differences between tasters and nontasters, and that nontasters' aftertaste of the saturated solution is equal in intensity with tasters perception immediately after stimulus presentation, but then after approximately 1 min fade faster. Nontaster ratings for the weaker solution were lower throughout the entire time period.  (+info)

Citrate ions enhance taste responses to amino acids in the largemouth bass. (2/198)

The glossopharyngeal (IX) taste system of the largemouth bass, Micropterus salmoides, is highly selective to amino acids and is poorly responsive to trisodium citrate; however, IX taste responses to specific concentrations of L- and D-arginine and L-lysine but not L-proline were enhanced by citrate but not sodium ions. Binary mixtures of L-arginine (3 x 10(-4)M and 10(-3)M) or D-arginine (10(-3)M) + trisodium citrate (10(-3)M; pH 7-9) resulted in enhanced taste activity, whereas binary mixtures of higher concentrations (10(-2)M and 10(-1)M) of L- or D-arginine + 10(-3)M trisodium citrate were not significantly different from the response to the amino acid alone. Under continuous adaptation to 10(-3)M citrate, taste responses to L-arginine were also enhanced at the identical concentrations previously indicated, but responses to 10(-2)M and 10(-1)M L-arginine were significantly suppressed. Under continuous adaptation to 10(-2)M L-arginine, taste responses to 10(-2)M, 10(-1)M, and 10(0) M citrate were significantly enhanced. Cellular concentrations of both citrate and amino acids in prey of the carnivorous largemouth bass are sufficient for this taste-enhancing effect to occur naturally during consummatory feeding behavior. Citrate acting as a calcium chelator is presented as a possible mechanism of action for the enhancement effect.  (+info)

A kinetic study on benzoic acid pungency and sensory attributes of benzoic acid. (3/198)

Aqueous solutions of benzoic acid (BA) were evaluated by two methods: (i) sensory profile: a descriptive test of sensory attributes combined with semiquantitative analysis; and (ii) pungency intensity measures as a function of time: a computerized recording using specific software. Kinetic parameters evaluated were maximal intensity (I(MAX)), total time of pungency (Ttot), rates of increase (V1) and decrease (V2), half-life (T1/2), area under curve (AUC) and time to maximal intensity (T(IMAX)). Results were analyzed by ANOVA, LSD test, iterative calculations and adjustment to equations according to mathematical models, regression analysis, principal component analysis (PCA) and clusters analysis. Pungency was the main sensory attribute of BA (3-36 mM) in the tongue and epiglottis. The seven kinetic parameters showed concentration-dependency (P < 0.001) and were described by different functions: (i) lineal: I(MAX) = 2.24 +/- 0.14C - 3.06 +/- 2.58, R2 = 0.98; T(IMAX) = 0.19 +/- 0.02C + 6.87 +/- 0.47, R2 = 0.92; V1 = 0.68 +/- 0.03C + 0.10 +/- 0.69, R2 = 0.99; AUC = 49.10 +/- 3.17C - 230.78 +/- 59.66, R2 = 0.98; (ii) potency: T1/2 = 6.62 +/- 0.61C(0.39+/-0.03), R2 = 0.97; V2 = 1.07 +/- 0.11C(0.53+/-0.04), R2 = 0.98; Ttot = 8.08 +/- 1.01C(0.43+/-0.04), R2 = 0.96. PCA revealed high correlation between (i) T(IMAX) and Ttot; (ii) T1/2 and V2; and (iii) I(MAX) and V1. Stimuli grouped across three main clusters: (i) 3 and 6 mM; (ii) 9, 12 and 18 mM; and (iii) 24 and 36 mM. Maximal pungency intensity best correlated with both concentration and persistence among kinetic parameters. Prototypical prickling of BA was observed at 12 and 18 mM.  (+info)

Some taste molecules and their solution properties. (4/198)

The solution properties of a variety of different sapid substances from all four basic taste modalities, namely, sweet (n = 24), salty (n = 7), sour (n = 11) and bitter (n = 2), have been investigated. Some multisapophoric molecules, i.e. molecules exhibiting more than one taste, have also been included in the study in an attempt to define their properties in relation to the tastes they exhibit; eight sweet-bitter and three salty-bitter molecules were used. The density and sound velocity of their solutions in water have been measured and their apparent volumes, apparent compressibilities and compressibility hydration numbers calculated and compared. Apparent molar volumes (phi(v)) and apparent specific volumes (ASV) reflect the state of hydration of the molecules, and thus their extent of interaction with water structure. The range of ASVs reported are 0.13-0.49 cm3/g for salty molecules, 0.55-0.68 cm3/g for sweet molecules, 0.53-0.88 cm3/g for sweet-bitter molecules and a much wider range (0.16-0.85 cm3/g) for sour molecules. Isentropic apparent specific compressibilities range from -2.33 x 10(-5) to -8.06 x 10(-5) cm3/g x bar for salty molecules, -3.38 x 10(-7) to -2.34 x 10(-5) cm3/g x bar for sweet molecules, +6.35 x 10(-6) to -2.22 x 10(-5) cm3/g x bar for sweet-bitter molecules and +6.131 x 10(-6) to -2.99 x 10(-5) cm3/g x bar for sour molecules. Compressibility hydration numbers are also determinable from the measurements of isentropic compressibilities and these reflect the number of water molecules that are disturbed by the presence of the solutes in solution. This study also shows that it is possible to group isentropic apparent molar compressibility values by the taste quality exhibited by the molecules in the same order as for ASV.  (+info)

Perception of sweetness in simple and complex taste stimuli by adults and children. (5/198)

Currently, there is little information on the ability of children to analyse complex chemosensory stimuli in terms of the presence and magnitude of the components. The present study investigates this question by comparing the ability of 95 adults and 8- to 9-year-olds to estimate the sweetness of several concentrations of sucrose in water and in three foods, namely, orange drink, custard and shortbread biscuits, using a magnitude estimation procedure. The results indicated that similar response functions were produced by adults and children for the sweetness of aqueous solutions of sucrose, custard and biscuits, but not for orange juice, where the functions produced by both female and male children were significantly flatter than those of the adults. Stimulus context may have influenced the ratings of children in the no-sucrose and highest sucrose concentration conditions with two of the foods. The absence of differences between the response functions of the female and male children with all types of stimuli indicated that gender had no influence on their responses. It is concluded that, at mid-childhood, humans are capable of estimating the sweetness of sucrose in foods, but that they have a tendency to limit the range of numbers used in their estimates of sweetness at high concentrations of sucrose in some foods.  (+info)

Responses to repeated oral irritation by capsaicin, cinnamaldehyde and ethanol in PROP tasters and non-tasters. (6/198)

Both increases (sensitization) and decreases (desensitization) in oral irritation have been reported in response to repeated short-term stimulation by compounds such as capsaicin, zingerone and menthol. It is unclear why one irritant would show sensitization and another desensitization, and this is further complicated by substantial inter-individual variation in response patterns. These variations may be the result of individual differences such as that represented by sensitivity to 6-n-propylthiouracil (PROP), which has been associated with variation in the overall intensity of irritation. In addition, comparisons between irritants have almost always involved inter-study comparisons, entailing different subject groups and frequently different methods. In the studies reported here, responses to three irritants-capsaicin, cinnamaldehyde and ethanol-were examined as a function of PROP taster status. A common core of subjects also received all three irritants, allowing an assessment of the extent to which different response patterns between irritants seen previously were the result of different properties of the irritants themselves. Over a series of ten stimuli presented at 1 min intervals, PROP taster status differentiated subject responses on the basis of overall intensity, but not the pattern of responses over repeated stimulation. The group response to ethanol and cinnamaldehyde was desensitization, a pattern also shown by most of the individual subjects. In contrast, the group response to capsaicin was neither clear sensitization nor desensitization, reflecting much greater individual variability in response patterns. It is suggested that the time course to a single irritant stimulus largely determines between irritant response variations, while the inter-stimulus interval (ISI) used for a given irritant will have critical values for showing predominantly sensitization or desensitization.  (+info)

Determination of the taste threshold of copper in water. (7/198)

Copper effects on human health represent a relevant issue in modern nutrition. One of the difficulties in assessing the early, acute effects of copper ingested via drinking water is that the taste of copper may influence the response and the capacity to taste copper in different waters is unknown. The purpose of the study was to determine the taste threshold of copper in different types of water, using soluble and insoluble salts (copper sulfate and copper chloride). Copper-containing solutions (range 1.0-8.0 mg/l Cu) were prepared in tap water, distilled deionized water and uncarbonated mineral water. Sixty-one healthy volunteers (17-50 years of age), with no previous training for sensory evaluation, participated in the study. A modified triangle test was used to define the taste threshold value. The threshold was defined as the lowest copper concentration detected by 50% of the subjects assessed. To evaluate the olfactory input in the threshold value obtained, 15 of 61 subjects underwent a second set of triangle tests with the nose open and clamped, using distilled water with copper sulfate at a concentration corresponding to the individual's threshold. The taste threshold in tap water was 2.6 mg/l Cu for both copper sulfate and copper chloride. The corresponding values for distilled deionized water were 2.4 and 2.5 mg/l Cu for copper sulfate and copper chloride, respectively. In uncarbonated mineral water the threshold values were slightly higher, 3.5 and 3.8 mg/l Cu for copper sulfate and for copper chloride, respectively, which are significantly higher than those observed in tap and distilled waters (P < 0.01, Kruskal-Wallis test). The taste threshold did not change significantly when the nose was clamped. In conclusion, the median values for copper taste threshold were low, ranging between 2.4 and 3.8 mg/l Cu, depending on the type of water.  (+info)

Long-term zinc deficiency decreases taste sensitivity in rats. (8/198)

The effects of zinc deficiency on taste sensitivity were examined in rats by recording the electrophysiological responses of the chorda tympani (CT) nerve and by use of a preference test. Male 4-wk-old Sprague-Dawley rats were given free access to a diet containing 2.2 (zinc-deficient), 4.1 (low zinc) or 33.7 (zinc-sufficient) mg zinc/kg diet. A fourth group was pair-fed the zinc-sufficient diet (with respect to the zinc-deficient rats). A two-bottle preference test using 0.15 mol/L NaCl and water revealed that NaCl preference was greater in the zinc-deficient and low zinc groups than in the control groups (zinc-sufficient and pair-fed) after 4 d of feeding. In the case of quinine hydrochloride solution (0.01 mmol/L), the preference was greater in zinc-deficient rats than in the other groups after 9 d, and the low zinc rats never showed a preference. Electrophysiological recording indicated that in the zinc-deficient rats, the CT nerve response to 0.20 mol/L NaCl was significantly less than that in the control rats after 21 d of feeding. In the low zinc rats, this response was significantly less than in the control rats after 35 d. The responses to quinine hydrochloride (0.02 mol/L), L-glutamic acid, HCl (0.01 mol/L) and NH(4)Cl (0.25 mol/L) in the zinc-deficient rats were not significantly reduced until d 42. These findings suggest that long-term zinc deficiency decreases taste sensitivity at the level of the CT nerve and that the change in NaCl preference due to zinc deficiency occurs before any change in NaCl taste sensitivity.  (+info)