A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. (49/1277)

Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent beta-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of beta-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.  (+info)

Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. (50/1277)

Variation at the variable number tandem repeat (VNTR) minisatellite 5' of the insulin gene (INS) is associated with several phenotypes, including type 1 diabetes, polycystic ovary syndrome, and birth weight. Case-control studies have suggested that class III VNTR alleles are also associated with type 2 diabetes, but results have been inconsistent and may reflect population stratification. To explore further the role of the INS-VNTR in type 2 diabetes susceptibility, we used family-based association methods in 155 parent-offspring trios from the British Diabetic Association-Warren Trios repository, each ascertained via a Europid proband with type 2 diabetes. Overall, there was no significant association between diabetes and the INS-VNTR genotype, with 65 of 119 heterozygous parents (55%) transmitting class III and 54 class I (P = 0.16, one-sided). However, whereas maternal transmissions followed Mendelian expectation, there was a marked excess of class III transmission from the 49 heterozygous fathers (34 [69%] vs. 15, P = 0.003 vs. 50% expectation, P = 0.003 vs. maternal transmission). These results confirm that variation within the TH-INS-IGF2 locus, most plausibly at the VNTR itself, influences type 2 diabetes susceptibility. By demonstrating that this effect is mediated exclusively by the paternally derived allele, these findings implicate imprinted genes in the pathogenesis of type 2 diabetes.  (+info)

Efficient production of artificially designed gelatins with a Bacillus brevis system. (51/1277)

Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.  (+info)

Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. (52/1277)

Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C. raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.  (+info)

Molecular diversity of Renibacterium salmoninarum isolates determined by randomly amplified polymorphic DNA analysis. (53/1277)

The molecular diversity among 60 isolates of Renibacterium salmoninarum which differ in place and date of isolation was investigated by using randomly amplified polymorphic DNA (RAPD) analysis. Isolates were grouped into 21 banding patterns which did not reflect the biological source. Four 16S-23S rRNA intergenic spacer (ITS1) sequence variations and two alleles of an exact tandem repeat locus, ETR-A, were the bases for formation of distinct groups within the RAPD clusters. This study provides evidence that the most common ITS1 sequence variant, SV1, possesses two copies of a 51-bp repeat unit at ETR-A and has been widely dispersed among countries which are associated with mainstream intensive salmonid culture.  (+info)

Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. (54/1277)

To better understand the requirements for telomerase-mediated telomere addition in vivo, we developed an assay in S. cerevisiae that creates a chromosome end immediately adjacent to a short telomeric DNA tract. The de novo end acts as a telomere: it is protected from degradation in a CDC13-dependent manner, telomeric sequences are added efficiently, and addition occurs at a faster rate in mutant strains that have long telomeres. Telomere addition was detected in M phase arrested cells, which permitted us to determine that the essential DNA polymerases alpha and delta and DNA primase were required. This indicates that telomeric DNA synthesis by telomerase is tightly coregulated with the production of the opposite strand. Such coordination prevents telomerase from generating excessively long single-stranded tails, which may be deleterious to chromosome stability in S. cerevisiae.  (+info)

Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. (55/1277)

For many pathogenic microbes that utilize mainly asexual modes of reproduction, it is unknown whether epidemics are due to either the emergence of pathogenic clones or environmentally determined increases in the population size of the organism. Descriptions of the genetic structures of epidemic populations, in conjunction with analyses of key environmental variables, are able to distinguish between these competing hypotheses. A major epidemic of coccidioidomycosis (etiologic agent, Coccidioides immitis) occurred between 1991 and 1994 in central California, representing an 11-fold increase above the mean number of cases reported from 1955 to 1990. Molecular analyses showed extensive genetic diversity, a lack of linkage disequilibria, and little phylogenetic structure, demonstrating that a newly pathogenic strain was not responsible for the observed epidemic. Epidemiological analyses showed that morbidity caused by C. immitis was best explained by the interaction between two variables, the lengths of droughts preceding epidemics and the amounts of rainfall. This shows that the principal factors governing this epidemic of C. immitis are environmental and not genetic. An important implication of this result is that the periodicity of cyclical environmental factors regulates the population size of C. immitis and is instrumental in determining the size of epidemics. This knowledge provides an important tool for predicting outbreaks of this pathogen, as well as a general framework that may be applied to determine the causes of epidemics of other fungal diseases.  (+info)

The complete sequence of a heterochromatic island from a higher eukaryote. The Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center, and PE Biosystems Arabidopsis Sequencing Consortium. (56/1277)

Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation.  (+info)