Dissecting the ubiquitin pathway by mass spectrometry. (65/5193)

Protein modification by ubiquitin is a central regulatory mechanism in eukaryotic cells. Recent proteomics developments in mass spectrometry enable systematic analysis of cellular components in the ubiquitin pathway. Here, we review the advances in analyzing ubiquitinated substrates, determining modified lysine residues, quantifying polyubiquitin chain topologies, as well as profiling deubiquitinating enzymes based on the activity. Moreover, proteomic approaches have been developed for probing the interactome of proteasome and for identifying proteins with ubiquitin-binding domains. Similar strategies have been applied on the studies of the modification by ubiquitin-like proteins as well. These strategies are discussed with respect to their advantages, limitations and potential improvements. While the utilization of current methodologies has rapidly expanded the scope of protein modification by the ubiquitin family, a more active role is anticipated in the functional studies with the emergence of quantitative mass spectrometry.  (+info)

Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. (66/5193)

Analytical methods are pursued to measure the identity and location of biomolecules down to the subcellular (microm) level. Available mass spectrometric imaging methods either compromise localization accuracy or identification accuracy in their analysis of surface biomolecules. In this study, imaging FTICR-MS is applied for the spatially resolved mass analysis of rat brain tissue with the aim to optimize protein identification by the high mass accuracy and online MS/MS capabilities of the technique. Mass accuracies up to 6 ppm were obtained in the direct MALDI-analysis of the tissue together with a spatial resolution of 200 microm. The spatial distributions of biomolecules differing in mass by less than 0.1 Da could be resolved, and are shown to differ significantly. Online MS/MS analysis of selected ions was demonstrated. A comparison of the FTICR-MS imaging results with stigmatic TOF imaging on the same sample is presented. To reduce the extended measuring times involved, it is recommended to restrict the FTICR-MS analyses to areas of interest as can be preselected by other, faster imaging methods.  (+info)

Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. (67/5193)

Hydrogen rearrangement is an important process in radical chemistry. A high degree of H. rearrangement to and from z. ionic fragments (combined occurrence frequency 47% compared with that of z.) is confirmed in analysis of 15,000 tandem mass spectra of tryptic peptides obtained with electron capture dissociation (ECD), including previously unreported double H. losses. Consistent with the radical character of H. abstraction, the residue determining the formation rate of z' = z. + H. species is found to be the N-terminal residue in z. species. The size of the complementary c(m)' fragment turned out to be another important factor, with z' species dominating over z. ions for m < or = 6. The H. atom was found to be abstracted from the side chains as well as from alpha-carbon groups of residues composing the c' species, with Gln and His in the c' fragment promoting H. donation and Asp and Ala opposing it. Ab initio calculations of formation energies of .A radicals (A is an amino acid) confirmed that the main driving force for H. abstraction by z. is the process exothermicity. No valid correlation was found between the NC(alpha) bond strength and the frequency of this bond cleavage, indicating that other factors than thermochemistry are responsible for directing the site of ECD cleavage. Understanding hydrogen attachment to and loss from ECD fragments should facilitate automatic interpretation ECD mass spectra in protein identification and characterization, including de novo sequencing.  (+info)

Plasma hormone levels in the green turtles Chelonia mydas during peak period of nesting at Ras Al-Hadd-Oman. (68/5193)

Circulating estradiol (E(2)), progesterone (Pro), testosterone, and corticosterone (B) levels were monitored in the green turtles Chelonia mydas during different nesting phases. Successful nesting includes emergence from sea, chamber and nest excavation, oviposition, burying the nest, and returning to sea. Unsuccessful nesting includes chamber and nest excavations but without oviposition. Blood samples were taken from the cervical sinus and collected within 5-min of capture to minimize stress. The samples were collected between 2000 and 0100 h during the peak season (May-October). High-performance liquid chromatography using a u.v. detection system coupled with tandem quadrupole mass spectrometry was used to measure B. Plasma B levels were significantly higher in successful and unsuccessful phases over emergence and excavation phases. However, B levels in successful versus unsuccessful or emergence versus excavation phases were not significantly different. Plasma steroid levels were measured by the Coat-A-Count RIA technique. Pro levels were significantly higher (P<0.005) in successful over unsuccessful turtles and also successful turtles over turtles in the other phases (P<0.01). The Pro levels immediately after nesting were found to be higher than that reported previously. Plasma testosterone values were higher in successful turtles but not significantly different from the turtles in other phases. Estrogen levels were undetected in all phases. Overall, the hormone values during different phases of nesting may play a major role in formulating the nesting behavior and physiology of the nesting activities in the green turtle.  (+info)

HybGFS: a hybrid method for genome-fingerprint scanning. (69/5193)

BACKGROUND: Protein identification based on mass spectrometry (MS) has previously been performed using peptide mass fingerprinting (PMF) or tandem MS (MS/MS) database searching. However, these methods cannot identify proteins that are not already listed in existing databases. Moreover, the alternative approach of de novo sequencing requires costly equipment and the interpretation of complex MS/MS spectra. Thus, there is a need for novel high-throughput protein-identification methods that are independent of existing predefined protein databases. RESULTS: Here, we present a hybrid method for genome-fingerprint scanning, known as HybGFS. This technique combines genome sequence-based peptide MS/MS ion searching with liquid-chromatography elution-time (LC-ET) prediction, to improve the reliability of identification. The hybrid method allows the simultaneous identification and mapping of proteins without a priori information about their coding sequences. The current study used standard LC-MS/MS data to query an in silico-generated six-reading-frame translation and the enzymatic digest of an entire genome. Used in conjunction with precursor/product ion-mass searching, the LC-ETs increased confidence in the peptide-identification process and reduced the number of false-positive matches. The power of this method was demonstrated using recombinant proteins from the Escherichia coli K12 strain. CONCLUSION: The novel hybrid method described in this study will be useful for the large-scale experimental confirmation of genome coding sequences, without the need for transcriptome-level expression analysis or costly MS database searching.  (+info)

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. (70/5193)

The biotransformation products of zearalenone, a Fusarium mycotoxin, were elucidated using the model plant Arabidopsis thaliana. After treatment of plant seedlings with 50 microM zearalenone, both the liquid media and the plant extracts were analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). An array of 17 different metabolites, most prominently glucosides, malonylglucosides, di-hexose- and hexose-pentose disaccharides of zearalenone, and alpha- and beta-zearalenol, were detected in the samples. Time courses for the different zearalenone metabolites were recorded and they give a closer insight into the metabolism kinetics. A scheme proposing the zearalenone metabolism in A. thaliana is given. The aspect of food safety regarding the (potential) occurrence of masked mycotoxins in agricultural commodities is discussed.  (+info)

MALDI TOF/TOF tandem mass spectrometry as a new tool for amino acid analysis. (71/5193)

This is the first report of an application of collisionally induced fragmentation of amino acids (AA) and their derivatives by MALDI TOF/TOF tandem mass spectrometry (MS). In this work, we collected the data on high-energy fragmentation reactions of a large group of protonated amino acids and their derivatives with the goal of determining which product ions are analyte specific and if yields of these fragment could be used for quantitative analysis. From 34 different amino acids (20 alpha-amino acids, beta-amino acids, homocysteine, GABA, and modified AA Met sulfone and sulfoxide, hydroxyproline, etc.) we observed that high yields of the target specific immonium ions and fragmentation patterns are most similar to EI or FAB CID on sector instruments. The major exceptions were two highly basic amino acids, Arg and Orn. It is noted that neither beta-, gamma-, nor delta-amino acids produce immonium ions. As might be predicted from high-energy CID work on peptides from the sectors and TOF/TOF, the presence of specific indicator ions in MALDI tandem MS allows distinguishing isomeric and isobaric amino acids. These indicator ions, in combination with careful control of data acquisition, ensure quantitative analysis of amino acids. We believe our data provide strong basis for the application of MALDI TOF/TOF MS/MS in qualitative and quantitative analysis of amino and organic acids, including application in clinical medicine.  (+info)

Specific detection of anabasine, nicotine, and nicotine metabolites in urine by liquid chromatography-tandem mass spectrometry. (72/5193)

The sensitive and specific detection of nicotine, its metabolites, and the tobacco alkaloid, anabasine, is useful in evaluating the success of smoking cessation treatments and detecting tobacco use, passive exposure, and nontobacco nicotine exposure in potential transplant recipients, insurance clients, and elective surgical patients. Rapid sample preparation and extended high-performance liquid chromatographic separation of tobacco alkaloids and metabolites was interfaced with tandem mass spectrometry. By using deuterated internal standards and appropriate confirmatory ion mass transitions, direct injection of centrifugally clarified urine was possible. The method had excellent precision, limit of quantitation, and linearity. The rigorous separation method revealed an interferent of nicotine that had coeluted with anabasine in more rapid chromatography and that may result in tobacco use misclassification. The method provides more specific detection of tobacco exposure and illustrates the potential of centrifugal clarification for sample preparation in the detection of multiple analytes in urine.  (+info)