(1/3862) The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture.

We have established or characterized six lines of human breast cancer maintained in long-term tissue culture for at least 1 year and have examined these lines for estrogen responsiveness. One of these cell lines, MCF-7, shows marked stimulation of macromolecular synthesis and cell division with physiological concentrations of estradiol. Antiestrogens are strongly inhibitory, and at concentrations greater than 3 X 10(-7) M they kill cells. Antiestrogen effects are prevented by simultaneous treatment with estradiol or reversed by addition of estradiol to cells incubated in antiestrogen. Responsive cell lines contain high-affinity specific estradiol receptors. Antiestrogens compete with estradiol for these receptors but have a lower apparent affinity for the receptor than estrogens. Stimulation of cells by estrogens is biphasic, with inhibition and cell death at concentrations of 17beta-estradiol or diethylstilbestrol exceeding 10(-7) M. Killing by high concentrations of estrogen is probably a nonspecific effect in that we observe this response with 17alpha-estradiol at equivalent concentrations and in the otherwise unresponsive cells that contain no estrogen receptor sites.  (+info)

(2/3862) Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance.

Human breast tumors that are initially responsive to tamoxifen (TAM) eventually relapse during treatment. Estrogen receptor (ER) expression and function are often preserved in these tumors, and clinical evidence suggests that this relapse may be related to TAM's known agonistic properties. ER can interact with the activator protein-1 (AP-1) transcription factor complex through protein-protein interactions that are independent of ER DNA binding and, in certain ER-positive cells, this may allow TAM to exert an agonist response on AP-1-regulated genes. We, therefore, assessed both AP-1 DNA binding and the known AP-1 activating enzyme, c-Jun NH2-terminal kinase (JNK), in a panel of 30 ER-positive primary human breast tumors with acquired TAM resistance, as compared to a matched panel of 27 untreated control ER-positive breast tumors and a separate control set of 14 primary tumors, which included 7 ER-positive tumors that were growth-arrested by 3 months of preoperative TAM. AP-1 DNA binding activity was measured from cryopreserved tumor extracts using a labeled oligonucleotide probe containing a consensus AP-1 response element by electrophoretic mobility shift assay. JNK was first extracted from the tumor lysates by incubation over a Sepharose-bound c-Jun(1-89) fusion protein, and its activity was then measured by chemiluminescent Western blot by detection of the phosphorylated product using a phospho-Jun(Ser-63)-specific primary antibody. The set of control ER-positive breast tumors growth arrested by TAM showed no significant difference from untreated control tumors in their AP-1 DNA binding and JNK activities. In contrast, there was a significant (P < 0.001) increase in mean AP-1 DNA binding activity for the panel of ER-positive TAM-resistant (TAM-R) tumors as compared to its matched control panel of untreated tumors. Mean JNK activity in the TAM-R tumors was also significantly higher than that found in the untreated tumors (P = 0.038). Overall, there was no significant correlation between JNK activity and AP-1 DNA binding; however, regression analysis showed that, for any given level of JNK activity, the TAM-R tumors possessed a 3.5-fold increase in AP-1 DNA binding activity as compared to the untreated tumors. These findings indicate that, when compared to untreated ER-positive primary breast tumors, TAM-R tumors demonstrate significantly increased levels of AP-1 DNA binding and JNK activity, consistent with experimental models suggesting that TAM-stimulated ER-positive tumor growth may be mediated by enhanced AP-1 transcriptional activity. These observations support the need for further evaluation of these markers in breast tumors as predictors of TAM resistance.  (+info)

(3/3862) Influence of tangeretin on tamoxifen's therapeutic benefit in mammary cancer.

BACKGROUND: Tamoxifen and the citrus flavonoid tangeretin exhibit similar inhibitory effects on the growth and invasive properties of human mammary cancer cells in vitro; furthermore, the two agents have displayed additive effects in vitro. In this study, we examined whether tangeretin would enhance tamoxifen's therapeutic benefit in vivo. METHODS: Female nude mice (n = 80) were inoculated subcutaneously with human MCF-7/6 mammary adenocarcinoma cells. Groups of 20 mice were treated orally by adding the following substances to their drinking water: tamoxifen (3 x 10(-5) M), tangeretin (1 x 10(-4) M), tamoxifen plus tangeretin (3 x 10(-5) M plus 1 x 10(-4) M), or solvent. RESULTS AND CONCLUSIONS: Oral treatment of mice with tamoxifen resulted in a statistically significant inhibition of tumor growth compared with solvent treatment (two-sided P = .001). Treatment with tangeretin did not inhibit tumor growth, and addition of this compound to drinking water with tamoxifen completely neutralized tamoxifen's inhibitory effect. The median survival time of tumor-bearing mice treated with tamoxifen plus tangeretin was reduced in comparison with that of mice treated with tamoxifen alone (14 versus 56 weeks; two-sided P = .002). Tangeretin (1 x 10(-6) M or higher) inhibited the cytolytic effect of murine natural killer cells on MCF-7/6 cells in vitro, which may explain why tamoxifen-induced inhibition of tumor growth in mice is abolished when tangeretin is present in drinking water. IMPLICATIONS: We describe an in vivo model to study potential interference of dietary compounds, such as flavonoids, with tamoxifen, which could lead to reduced efficacy of adjuvant therapy. In our study, the tumor growth-inhibiting effect of oral tamoxifen was reversed upon addition of tangeretin to the diet. Our data argue against excessive consumption of tangeretin-added products and supplements by patients with mammary cancer during tamoxifen treatment.  (+info)

(4/3862) The aromatase inactivator 4-hydroxyandrostenedione (4-OH-A) inhibits tamoxifen metabolism by rat hepatic cytochrome P-450 3A: potential for drug-drug interaction of tamoxifen and 4-OH-A in combined anti-breast cancer therapy.

Tamoxifen (tam), an anti-breast cancer agent, is metabolized into tam-N-oxide by the hepatic flavin-containing monooxygenase and into N-desmethyl- and 4-hydroxy-tam by cytochrome P-450s (CYPs). Additionally, tam is metabolically activated by hepatic CYP3A, forming a reactive intermediate that binds covalently to proteins. Tam and 4-hydroxyandrostenedione (4-OH-A) are currently used to treat breast cancer, and it has been contemplated that 4-OH-A be given concurrently with tam to contravene potential tumor resistance to tam. Because alterations in tam metabolism may influence its therapeutic efficacy, the effect of 4-OH-A on tam metabolism was examined. Incubation of tam with liver microsomes from phenobarbital-treated rats, in the presence of 4-OH-A (10-100 microM), resulted in marked inhibition of tam-N-demethylation and tam covalent binding and in decreased tam-N-oxide accumulation; however, there was no inhibition of the formation of 4-hydroxy-tam and of 3,4-dihydroxytamoxifen. These findings indicate that 4-OH-A inhibits CYP3A, but not P-450(s) that catalyze tam 4-hydroxylation. The diminished tam-N-oxide accumulation could be due to decreased N-oxide formation and/or due to increased N-oxide reduction. Incubation of tam-N-oxide with liver microsomes containing heat-inactivated flavin-containing monooxygenase demonstrated that 4-OH-A increases the accumulation of tam, possibly by diminishing its P-450-mediated metabolism. Kinetic studies indicate that 4-OH-A is a competitive inhibitor of CYP3A, but not a time-dependent inactivator. Consequently, the concurrent treatment of tam and 4-OH-A may result in increased tam half-life and thus could potentiate the therapeutic efficacy of tam and diminish the potential side effects of tam by inhibiting its covalent binding to proteins and possibly to DNA.  (+info)

(5/3862) Multimodality therapy for locally advanced and limited stage IV breast cancer: the impact of effective non-cross-resistance late-consolidation chemotherapy.

To determine the effectiveness of non-cross-resistant late-consolidation chemotherapy in locally advanced breast cancer (LABC) and stage IV breast cancer, we review our experience with two regimens. Between 1985 and 1991, we enrolled 56 patients with LABC, who were treated with a doxorubicin-based adjuvant regimen, followed by a late-consolidation non-cross-resistant regimen containing methotrexate, 5-fluorouracil, cisplatin, and cyclophosphamide. Between 1985 and 1996, a total of 45 patients with limited stage IV breast cancer underwent surgical excision of all evaluable disease, making them metastatic (stage IV) with no evaluable disease. Surgery was followed by a doxorubicin-containing regimen and then a late-consolidation non-cross-resistant regimen, which was either methotrexate, 5-fluorouracil, cisplatinum, and cyclophosphamide or 5-fluorouracil, mitomycin, etoposide, and cisplatin. Twenty-four patients with limited bone metastases that were unresectable were treated with a doxorubicin-containing regimen, radiation therapy to all sites of disease, and then one of the two late non-cross-resistant regimens. With a median follow-up of 84 months, 78% of patients with LABC are alive, and 68% are free of disease. After a median follow-up of 44 months, 53% of patients with stage IV with no evaluable disease are alive and free of disease. The use of non-cross-resistant late-consolidation chemotherapy is an effective strategy in the treatment of patients with LABC and selected patients with limited stage IV breast cancer.  (+info)

(6/3862) Idoxifene derivatives are less reactive to DNA than tamoxifen derivatives, both chemically and in human and rat liver cells.

The drug tamoxifen shows evidence of genotoxicity, and induces liver tumours in rats. Covalent DNA adducts have been detected in the liver of rats treated with tamoxifen, and these arise through metabolism at the alpha-position to give an ester which reacts with DNA. (E)-1-(4-iodophenyl)-2-phenyl-1-[4-(2-pyrrolidinoethoxy)phenyl]-but-1-en e (idoxifene) is an analogue of tamoxifen in which formation of DNA adducts is greatly reduced; we could not detect any adducts in the DNA of cultured rat hepatocytes treated with 10 microM idoxifene, after analysis by the 32P-post-labelling method. The metabolite (Z)-4-(4-iodophenyl)-4-[4-(2-pyrrolidinoethoxy)phenyl]-3-phenyl-3-but en-2-ol (alpha-hydroxyidoxifene) gave adducts in rat hepatocytes, but far fewer than the corresponding tamoxifen metabolite. In human hepatocytes, neither idoxifene nor tamoxifen induced detectable levels of DNA adducts. We prepared the alpha-acetoxy ester of idoxifene as a model for the ultimate reactive metabolite formed in rat liver. It was less reactive than alpha-acetoxytamoxifen, as might be expected on mechanistic grounds. It reacted with DNA in the same way, to give adducts which were probably N2-alkyldeoxyguanosines, but to a lower extent. All these results indicate that idoxifene is much less genotoxic than tamoxifen, and should therefore be a safer drug.  (+info)

(7/3862) Identification of the major tamoxifen-DNA adducts in rat liver by mass spectroscopy.

We present here the first mass spectroscopic (MS) identification of the main tamoxifen-induced DNA adducts in rat liver. The two main adducts were isolated by high-performance liquid chromatography (HPLC) and identified by MS, MS-MS and ultraviolet spectroscopy. Adduct 1 was the N-desmethyltamoxifen-deoxyguanosine adduct in which the alpha-position of the metabolite N-desmethyltamoxifen is linked covalently to the amino group of deoxyguanosine. Adduct 2 was confirmed to be the trans isomer of alpha-(N2-deoxyguanosinyl)tamoxifen, as previously suggested by co-chromatography.  (+info)

(8/3862) Lack of evidence from HPLC 32P-post-labelling for tamoxifen-DNA adducts in the human endometrium.

Tamoxifen is associated with an increased incidence of endometrial cancer in women. It is also a potent carcinogen in rat liver and forms covalent DNA adducts in this tissue. A previous study exploring DNA adducts in human endometria, utilizing thin layer chromatography 32P-postlabelling, found no evidence for adducts in tamoxifen-treated women [Carmichael,P.L., Ugwumadu,A.H.N., Neven,P., Hewer,A.J., Poon,G.K. and Phillips,D.H. (1996) Cancer Res., 56, 1475-1479]. However, subsequent work utilizing HPLC 32P-post-labelling [Hemminki,K., Ranjaniemi,H., Lindahl,B. and Moberger,B. (1996) Cancer Res., 56, 4374-4377] suggested that very low levels could be detected. We have sought to investigate this question further by reproducing the HPLC methodology at two centres, and analysing endometrial DNA from 20 patients treated with 20 mg/day tamoxifen for between 22 and 65 months. Liver DNA isolated from tamoxifen-treated rats was used as a positive control. We found no convincing evidence for tamoxifen-derived DNA adducts in human endometrium. HPLC elution profiles of post-labelled DNA from tamoxifen-treated women were indistinguishable from those obtained with DNA from 14 untreated women and from six women taking toremifene, an analogue of tamoxifen.  (+info)