Cutting edge: stable epigenetic inheritance of regional IFN-gamma promoter demethylation in CD44highCD8+ T lymphocytes. (73/8823)

Genomic DNA methylation patterns influence the development and maintenance of function during cellular differentiation. Methylation of regulatory sequences can have long-lasting effects on gene expression if inherited in an epigenetic manner. Recent work suggests that DNA methylation has a regulatory role in differential cytokine gene expression in primary T lymphocytes. Here we show, by clonal lineage analysis, that methylation patterns in the IFN-gamma promoter exhibit long term faithful inheritance in CD44highCD8+ T cells and their progeny, through 16 cell divisions and a clonal expansion of 5 orders of magnitude. Moreover, the demethylated IFN-gamma promoter is faithfully inherited following the withdrawal of T cell stimulation and the loss of detectable IFN-gamma mRNA, consistent with passive rather than active maintenance mechanisms. This represents a form of stable cellular memory, of defined epigenetic characteristics, that may contribute to the maintenance of T cell cytokine expression patterns and T cell memory.  (+info)

Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT cells. (74/8823)

In contrast to peripheral lymphoid organs, a high percentage of T cells in the liver are CD4+NKT cells. We asked whether adhesion molecules play any role in the accumulation of CD4+NKT cells in the liver. Liver CD4+NKT cells expressed ICAM-1 and high levels of LFA-1. In the livers of LFA-1-deficient mice, the number of CD4+NKT cells was markedly decreased. This reduction was restricted to the liver, and no reduction was found in the other organs analyzed. In contrast, the number of liver CD4+NKT cells in ICAM-1-deficient mice was only marginally reduced. In a reciprocal radiation thymocyte reconstitution system with LFA-1-deficient and wild-type mice, LFA-1 expressed on liver cells other than CD4+NKT cells was required for an accumulation of CD4+NKT cells in the liver. These results demonstrate a crucial role for LFA-1 in the accumulation of CD4+NKT cells in the liver.  (+info)

Thymic shared antigen-2: a novel cell surface marker associated with T cell differentiation and activation. (75/8823)

Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  (+info)

T cell reconstitution of BB/W rats after the initiation of insulitis precipitates the onset of diabetes. (76/8823)

One of the diabetes susceptibility genes of the BB/W (Biobreeding/Worcester) rat maps to the lyp locus on chromosome 4. The BB/W lyp allele is responsible for a severe peripheral T lymphopenia. Correction of this lymphopenia by transfer of normal, histocompatible T cells prevents diabetes, providing T cell reconstitution is initiated before insulitis. We have analyzed this time-dependent regulation of the diabetogenic process by normal T cells. We demonstrate that T cell reconstitution after the initiation of insulitis precipitates the onset of diabetes through the recruitment of donor T cells to the autoimmune process. This inability of normal T cells to regulate primed diabetogenic BB/W T cells and their own autoreactive potential were observed when normal T cells outnumbered pathogenic T cells by approximately 1000-fold. Analysis of donor-derived T cells recovered from BB/W rats that were reconstituted before insulitis, and hence protected from diabetes, demonstrates that early T cell reconstitution of BB/W rats does not result in a long term physical or functional depletion of islet cell-specific T cell precursors among donor cells or in the expansion of T cells that can regulate the activation and expansion of diabetogenic T cells.  (+info)

Splenic NK1.1-negative, TCR alpha beta intermediate CD4+ T cells exist in naive NK1.1 allelic positive and negative mice, with the capacity to rapidly secrete large amounts of IL-4 and IFN-gamma upon primary TCR stimulation. (77/8823)

Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells.  (+info)

Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. (78/8823)

The adoptive transfer of TCR-transgenic T cells into syngeneic recipients allows characterization of individual T cells during in vivo immune responses. However, the proliferative behavior of individual T cells and its relationship to effector and memory function has been difficult to define. Here, we used a fluorescent dye to dissect and quantify T cell proliferative dynamics in vivo. We find that the average Ag-specific CD4+ T cell that undergoes division in vivo generates >20 daughter cells. TCR and CD28 signals cooperatively determine the degree of primary clonal expansion by increasing both the proportion of Ag-specific T cells that divide and the number of rounds of division the responding T cells undergo. Nonetheless, despite optimal signaling, up to one-third of Ag-specific cells fail to divide even though they show phenotypic evidence of Ag encounter. Surprisingly, however, transgenic T cells maturing on a RAG-2-/- background exhibit a responder frequency of 95-98% in vivo, suggesting that maximal proliferative potential requires either a naive phenotype or allelic exclusion at the TCRalpha locus. Finally, studies reveal division cycle-dependent expression of markers of T cell differentiation, such as CD44, CD45RB, and CD62L, and show also that expression of the cytokines IFN-gamma and IL-2 depends primarily on cell division rather than on receipt of costimulatory signals. These results provide a quantitative assessment of T cell proliferation in vivo and define the relationship between cell division and other parameters of the immune response including cytokine production, the availability of costimulation, and the capacity for memory.  (+info)

Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. (79/8823)

This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  (+info)

Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. (80/8823)

CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.  (+info)