Brachyury downstream notochord differentiation in the ascidian embryo. (25/1708)

The ascidian tadpole represents the most simplified chordate body plan. It contains a notochord composed of just 40 cells, but as in vertebrates Brachyury is essential for notochord differentiation. Here, we show that the misexpression of the Brachyury gene (Ci-Bra) of Ciona intestinalis is sufficient to transform endoderm into notochord. Subtractive hybridization screens were conducted to identify potential Brachyury target genes that are induced upon Ci-Bra misexpression. Of 501 independent cDNA clones that were surveyed, 38 were specifically expressed in notochord cells. These potential Ci-Bra downstream genes appear to encode a broad spectrum of divergent proteins associated with notochord formation.  (+info)

Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. (26/1708)

The Brachyury genes of two divergent ascidians, As-T of Halocynthia roretzi and Ci-Bra of Ciona intestinalis, are expressed exclusively in notochord precursor cells. A previous study showed that the notochord-specific expression of Ci-Bra is controlled by a minimal promoter that is composed of three distinct regions: a region responsible for repression of expression in non-notochord mesoderm cells, a region for activation of expression in notochord cells, and a region for activation of expression in non-notochord mesoderm cells, distal to proximal to the transcription initiation site, respectively. We examined various deletion constructs of the As-T/lacZ fusion gene and demonstrate that a module between -289 and -250 bp of the 5'-flanking region is responsible for notochord-specific expression of the reporter gene. Gel-shift assays suggested the binding of nuclear protein(s) to this module. The 5'-flanking region of As-T contains a potential T-binding motif (-ACCTAGGT-) around -160 bp. Deletion of this motif from the p(-289)As-T/lacZ diminished the reporter gene expression. In addition, coinjection of p(-289)As-T/lacZ and synthetic As-T mRNA resulted in ectopic expression of lacZ in non-notochord cells, suggesting that the T-binding motif is responsible for autoactivation of the gene. These findings revealed striking differences between the minimal promoters of As-T and Ci-Bra so far revealed, with respect to their notochord-specific expression. Furthermore, reciprocal injections of reporter gene constructs, namely As-T/lacZ into Ciona eggs and Ci-Bra/lacZ into Halocynthia eggs, suggest alterations in the cis-regulatory elements and trans-activation factors that have occurred during evolution of the two ascidian species.  (+info)

Differential expression of VegT and Antipodean protein isoforms in Xenopus. (27/1708)

The VegT/Antipodean (Apod) gene is important for germ layer formation in Xenopus. To investigate the role of this gene at the protein level, as opposed to the RNA level, we have generated affinity purified polyclonal antibodies to Apod, and for comparison, to the other early T-box proteins Xbrachyury and Eomesodermin. An anti-VegT/Apod antibody reveals that there are two protein isoforms in Xenopus, one that we refer to as VegT and a smaller molecular weight isoform that we refer to as Apod. These isoforms have different N-terminal domains resulting from developmentally regulated alternative splicing of a primary transcript arising from a single VegT/Apod gene. VegT is maternally expressed. Its translation is blocked during oogenesis but the protein is present from the egg until gastrulation in the presumptive endoderm. There is no evidence for zygotic expression of this isoform. Conversely, the Apod protein isoform is expressed only after the onset of zygotic transcription in the presumptive mesoderm and is inducible by activin. We conclude that the developmental role of VegT/Apod is mediated by two different proteins, with entirely different patterns of expression and response to growth factors.  (+info)

Drosophila terminalia as an appendage-like structure. (28/1708)

In Drosophila, the homeotic gene Distal-less (Dll) has a fundamental role in the establishment of the identity of ventral appendages such as the leg and antenna. This study reports the expression pattern of Dll in the genital disc, the requirement of Dll activity for the development of the terminalia and the activation of Dll by the combined action of the morphogenetic signals Wingless (Wg) and Decapentaplegic (Dpp). During the development of the two components of the anal primordium - the hindgut and the analia - only the latter is dependent on Dll and hedgehog (hh) functions. The hindgut is defined by the expression of the homeobox gene even-skipped. The lack of Dll function in the anal primordia transforms the anal tissue into hindgut by the extension of the eve domain. Meanwhile targeted ectopic Dll represses eve expression and hindgut formation. The Dll requirement for the development of both anal plates in males and only for the dorsal anal plate in females, provides further evidence for the previously held idea that the analia arise from two primordia. In addition, evaluation was made of the requirement for the optomotor-blind (omb) gene which, as in the leg and antenna, is located downstream to Dpp. These results suggest that the terminalia show similar behaviour to the leg disc or the antennal part of the eye-antennal disc consistent with both the proposed ventral origin of the genital disc and the evolutive consideration of the terminalia as an ancestral appendage.  (+info)

Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways. (29/1708)

Brachyury plays a key role in mesoderm formation during vertebrate development. Absence of the gene results in loss of posterior mesoderm and failure of the notochord to differentiate, while misexpression of Brachyury in the prospective ectoderm of Xenopus results in ectopic mesoderm formation. Brachyury is therefore both necessary and sufficient for posterior mesoderm formation. Here we present a detailed cellular and molecular analysis of the consequences of inhibiting Brachyury function during Xenopus development. Our results show that Brachyury is required for the convergent extension movements of gastrulation, for mesoderm differentiation in response to FGF, and for the survival of posterior mesodermal cells in both Xenopus and mouse.  (+info)

Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. (30/1708)

T box (Tbx) genes are a family of developmental regulators with more than 20 members recently identified in invertebrates and vertebrates. Mutations in Tbx genes have been found to cause several human diseases. Our understanding of functional mechanisms of Tbx products has come mainly from the prototypical T/Brachyury, which is a transcription activator. We previously discovered ET, a Tbx gene expressed in Xenopus embryos. We report here that ET is an ortholog of the human Tbx3 and that ET is a repressor of basal and activated transcription. Functional dissection of the ET protein reveals a novel transcription-repression domain highly conserved among ET, human TBX3, and TBX2. These results reveal a new transcription repressor domain, show the existence of a subfamily of transcription repressors in the Tbx superfamily, and provide a basis for understanding etiology of diseases caused by Tbx3 mutations.  (+info)

A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. (31/1708)

BACKGROUND: In Xenopus, the endoderm germ layer is derived from the vegetal blastomeres of cleavage-stage embryos. Cell transplantation experiments have revealed that the endodermal fate becomes gradually fixed during the late blastula stages. Sox17alpha, Mix.1, Mixer and GATA-4 encode vegetal zygotic transcription factors with endoderm-inducing activity. The accumulation of their transcripts during the late blastula stages may cause determination of the endodermal fate. VegT, a T-box transcription factor, the maternal transcripts of which are vegetally localised, is also required for endoderm formation. RESULTS: We analysed the events leading to the progressive accumulation of the transcripts for Sox17alpha, Mix.1, Mixer and GATA-4. Two phases could be distinguished in the endodermal programme. In phase 1, Sox17alpha, Mix.1, and the genes encoding transforming growth factor beta-related signalling molecules Xnr1, Xnr2 and Derriere were activated cell-autonomously at around the mid-blastula transition (MBT) by maternal determinants. In phase 2, TGFbeta signalling, possibly involving Xnr1, Xnr2 and Derriere, led to the activation of Mixer and GATA-4 in late blastula stages and to the reinforcement of the expression of Sox17alpha and Mix.1. Overexpression of VegT in animal caps triggered a developmental programme qualitatively similar to that observed in vegetal blastomeres, except that Xnr1 and GATA-4 were not activated by the early gastrula stage. CONCLUSIONS: Our results support a two-step model for endoderm determination between fertilisation and the onset of gastrulation. The initial cell-autonomous activation of early endodermal genes by maternal determinants including, but not limited to, VegT is relayed by the action of zygotic TGFbetas such as Xnr1, Xnr2 and Derriere.  (+info)

Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain development. (32/1708)

The members of the T-box gene family share a highly conserved DNA binding domain named the T-domain, and important developmental functions. Here we report the cloning of chicken Tbr1 and of murine and chicken Tbr2 (orthologs of the Xenopus eomesodermin gene), the mapping of the murine Tbr2 to chromosome 9, and their pattern of expression during mouse and chick embryogenesis. Both Tbr 1 and 2 have a restricted and conserved domain of expression in the telencephalic pallium of the two species. Chick Tbr2 has a specific and dynamic expression in the gastrulating embryo.  (+info)