Zebrafish tbx-c functions during formation of midline structures. (17/1708)

Several genes containing the conserved T-box region in invertebrates and vertebrates have been reported recently. Here, we describe three novel members of the T-box gene family in zebrafish. One of these genes, tbx-c, is studied in detail. It is expressed in the axial mesoderm, notably, in the notochordal precursor cells immediately before formation of the notochord and in the chordoneural hinge of the tail bud, after the notochord is formed. In addition, its expression is detected in the ventral forebrain, sensory neurons, fin buds and excretory system. The expression pattern of tbx-c differs from that of the other two related genes, tbx-a and tbx-b. The developmental role of tbx-c has been analysed by overexpression of the full-length tbx-c mRNA and a truncated form of tbx-c mRNA, which encodes the dominant-negative Tbx-c. Overexpression of tbx-c causes expansion of the midline mesoderm and formation of ectopic midline structures at the expense of lateral mesodermal cells. In dominant-negative experiments, the midline mesoderm is reduced with the expansion of lateral mesoderm to the midline. These results suggest that tbx-c plays a role in formation of the midline mesoderm, particularly, the notochord. Moreover, modulation of tbx-c activity alters the development of primary motor neurons. Results of in vitro analysis in zebrafish animal caps suggest that tbx-c acts downstream of early mesodermal inducers (activin and ntl) and reveal an autoregulatory feedback loop between ntl and tbx-c. These data and analysis of midline (ntl-/- and flh-/-) and lateral mesoderm (spt-/-) mutants suggest that tbx-c may function during formation of the notochord.  (+info)

An ascidian T-box gene As-T2 is related to the Tbx6 subfamily and is associated with embryonic muscle cell differentiation. (18/1708)

The T-box genes, including Brachyury, encode a novel family of transcription factors that play critical roles in various processes of development, in particular, mesoderm formation in chordate embryos. In the case of the ascidian Halocynthia roretzi, the Brachyury (As-T) is expressed exclusively in notochord cells, whereas another T-box gene (As-T2) is expressed in the muscle cells and in the tip of the tail of tailbud embryos. In a previous study, we suggested that the combined pattern of the spatial expressions of As-T and As-T2 appears to correspond to that of a single vertebrate Brachyury gene (Yasuo et al., Dev Biol 1996;180:773-779). The present molecular phylogenetic analysis suggested that As-T2 is a divergent member of the T-box family with a similarity to the Tbx6 subfamily. Vertebrate members of this subfamily are expressed in the posterior paraxial mesoderm, and the mouse Tbx6 is essential for the specification of posterior somite. To investigate the function of As-T2, we examined an ectopic- and/or overexpression of this gene by injecting synthetic mRNA into fertilized eggs. The results showed that the injection of As-T2 mRNA induced an ectopic expression of muscle-specific myosin heavy-chain gene and actin gene, especially in presumptive epidermal cells. This ectopic muscle-specific expression was accompanied by the partial suppression of an epidermis-specific gene expression. The overexpression of As-T2, however, rarely affected the expression of As-T (Brachyury) and genes that are expressed in the tailbud.  (+info)

Protein kinase A is involved in the induction of early mesodermal marker genes by activin. (19/1708)

In this study we have investigated the role of cAMP-dependent protein kinase A (PKA) in the induction of the early mesodermal marker genes goosecoid and no tail by activin in zebrafish embryos. We show that upon treatment with activin, zebrafish blastula cells exhibit a rapid and transient increase in PKA activity. In these cells, activin rapidly induces the expression of the immediate early response genes goosecoid and no tail. Stimulation and inhibition of PKA by activin, respectively, enhances and reduces the induction of goosecoid and no tail mRNA expression. Similar effects of PKA stimulation and inhibition on the induction by activin of a 1.8 kb zebrafish goosecoid promoter construct were observed. The induction by activin of a fragment of the zebrafish goosecoid promoter that mediates an immediate early response to activin is blocked by inhibition of PKA. Activation of PKA alone has no effect in these experiments. Finally, inhibition of PKA in whole embryos by overexpression of a dominant negative regulatory subunit of PKA reduces the expression of no tail and goosecoid, whereas the expression of even-skippedl remains unaltered. Overexpression of the catalytic subunit of PKA in embryos does not affect expression of goosecoid, no tail or even-skippedl. These data show that in dissociated blastulae, PKA is required, but not sufficient for activin signalling towards induction of goosecoid and no tail. In intact zebrafish embryos, PKA contributes to induction of goosecoid and no tail, although it is not required or sufficient.  (+info)

The role of the brachyury gene in heart development and left-right specification in the mouse. (20/1708)

The midline has a theoretical role in the development of left-right asymmetry, and this is supported by both genetic analyses and experimental manipulation of midline structures in vertebrates. The mouse brachyury (T) gene encodes a transcription factor which is expressed in the developing notochord and is required for its development. T/T mice lack a mature notochord and have a dorsalised neural tube. We have examined the hearts of T/T mice and have found consistent morphological abnormalities, resulting in ventrally displaced ventricular loops, and a 50% incidence of inverted heart situs. Three TGF-beta related genes, lefty-1, lefty-2 and nodal, are expressed asymmetrically in mouse embryos, and are implicated in the development of situs. We find that nodal, which is normally expressed around the node and in left lateral plate mesoderm in early somite embryos, is completely absent at this stage in T/T embryos. In contrast, lefty-1 and lefty-2, which are normally expressed in the left half of prospective floorplate and left lateral plate mesoderm, respectively, are both expressed in T/T embryos only in a broad patch of ventral cells in, and just rostral to, the node region. These results implicate the node as a source of instructive signals driving expression of nodal and lefty-2 in the left lateral plate mesoderm, and being required for normal looping and situs of the heart.  (+info)

Anteroposterior patterning and organogenesis of Xenopus laevis require a correct dose of germ cell nuclear factor (xGCNF). (21/1708)

The germ cell nuclear factor of Xenopus laevis (xGCNF; NR6A1) is a nuclear orphan receptor that is predominantly expressed during neurula and late tailbud stages. As a strategy to analyze the role of xGCNF in embryogenesis, we have induced a gain of function by overexpression of full-length (fl) GCNF and a functional inhibition by a dominant-negative (dn) GCNF. Early events of embryogenesis including gastrulation and neurulation were not affected and the expression of several early mesodermal markers was normal. Yet specific defects were observed upon organogenesis. Ectopic posterior overexpression of the full-length xGCNF caused posterior defects and disturbed somite formation. In contrast, expression of dnGCNF interfered with differentiation of the neural tube and affected the differentiation of anterior structures, including the cement gland and the eyes. Embryos affected by dnGCNF were rescued by coexpression of flGCNF. After expression of dnGCNF, mRNA encoding the the retinoic acid receptor xRAR gamma 2 was selectively suppressed anteriorly. From the distinct phenotypes obtained, we conclude that GCNF has an essential function in anteroposterior differentiation during organogenesis.  (+info)

Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos. (22/1708)

Echinoderms, hemichordates and chordates are deuterostomes and share a number of developmental features. The Brachyury gene is responsible for formation of the notochord, the most defining feature of chordates, and thus may be a key to understanding the origin and evolution of the chordates. Previous studies have shown that the ascidian Brachyury (As-T and Ci-Bra) is expressed in the notochord and that a sea urchin Brachyury (HpTa) is expressed in the secondary mesenchyme founder cells. A recent study by [Tagawa et al. (1998)], however, revealed that a hemichordate Brachyury (PfBra) is expressed in a novel pattern in an archenteron invagination region and a stomodaeum invagination region in the gastrula. The present study demonstrated that the expression pattern of Brachyury (ApBra) of starfish embryos resembles that of PfBra in hemichordate embryos but not of HpTa in sea urchin embryos. Namely, ApBra is expressed in an archenteron invagination region and a stomodaeum invagination region.  (+info)

Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. (23/1708)

To further define the role of a T-box transcription factor, Tbx5, in cardiac development, we have examined its expression in the developing mouse and chick heart and correlated this pattern with cardiac defects caused by human TBX5 mutations in Holt-Oram syndrome. Early in the developing heart, Tbx5 is uniformly expressed throughout the entire cardiac crescent. Upon formation of the linear heart tube, Tbx5 is expressed in a graded fashion, stronger near the posterior end and weaker at the anterior end. As the heart tube loops, asymmetric Tbx5 expression continues; Tbx5 is expressed in the presumptive left ventricle, but not the right ventricle or outflow tract. This pattern of expression is maintained in more mature hearts. Expression in the ventricular septum is restricted to the left side and is contiguous with left ventricular free wall expression. Trabeculae, vena cavae (inferior and superior), and the atrial aspect of the atrioventricular valves also express high levels of Tbx5. These patterns of Tbx5 expression provide an embryologic basis for the prevalence of atrial septal defects (ostium primum and secundum), ventricular muscular septal defects, and left-sided malformations (endocardial cushion defects, hypoplastic left heart, and aberrant trabeculation) observed in patients with Holt-Oram syndrome.  (+info)

Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. (24/1708)

The endoderm forms the gut and associated organs, and develops from a layer of cells which emerges during gastrula stages in the vertebrate embryo. In comparison to mesoderm and ectoderm, little is known about the signals which induce the endoderm. The origin of the endoderm is intimately linked with that of mesoderm, both by their position in the embryo, and by the molecules that can induce them. We characterised a gene, zebrafish gata5, which is expressed in the endoderm from blastula stages and show that its transcription is induced by signals originating from the yolk cell. These signals also induce the mesoderm-expressed transcription factor no tail (ntl), whose initial expression coincides with gata5 in the cells closest to the blastoderm margin, then spreads to encompass the germ ring. We have characterised the induction of these genes and show that ectopic expression of activin induces gata5 and ntl in a pattern which mimics the endogenous expression, while expression of a dominant negative activin receptor abolishes ntl and gata5 expression. Injection of RNA encoding a constitutively active activin receptor leads to ectopic expression of gata5 and ntl. gata5 is activated cell-autonomously, whereas ntl is induced in cells distant from those which have received the RNA, showing that although expression of both genes is induced by a TGF-beta signal, expression of ntl then spreads by a relay mechanism. Expression of a fibroblast growth factor (eFGF) or a dominant negatively acting FGF receptor shows that ntl but not gata5 is regulated by FGF signalling, implying that this may be the relay signal leading to the spread of ntl expression. In embryos lacking both squint and cyclops, members of the nodal group of TGF-beta related molecules, gata5 expression in the blastoderm is abolished, making these factors primary candidates for the endogenous TGF-beta signal inducing gata5.  (+info)