Glucose-6-phosphate dehydrogenase deficiency in Kuwait, Syria, Egypt, Iran, Jordan and Lebanon. (1/108)

A total of 3,501 male subjects from six Arab countries living in Kuwait were investigated for quantitative and phenotypic distribution of red cell glucose-6-phosphate dehydrogenase (G6PD). The ethnic origins of those investigated were Kuwait, Egypt, Iran, Syria, Lebanon and Jordan. The distribution of G6PD deficiency among the different ethnic groups varied widely, ranging from 1.00% for Egyptians to 11.55% for Iranians. The activity of the normal enzyme was remarkably similar, with values ranging from 6.1 +/- 0.8 to 6.5 +/- 1.1 IU/g Hb. A low frequency of the Gd(A) allele was found in two ethnic groups, Egyptians (0.019) and Iranians (0.014). Gd(A-) was present at the very low frequency of 0.006 in another two ethnic groups, Kuwaitis and Jordanians.  (+info)

Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies spontaneum). (2/108)

Patterns of nucleotide sequence diversity in the predominantly self-fertilizing species Hordeum vulgare subspecies spontaneum (wild barley) are compared between the putative alcohol dehydrogenase 3 locus (denoted "adh3") and alcohol dehydrogenase 1 (adh1), two related but unlinked loci. The data consist of a sequence sample of 1,873 bp of "adh3" drawn from 25 accessions that span the species range. There were 104 polymorphic sites in the sequenced region of "adh3." The data reveal a strong geographic pattern of diversity at "adh3" despite geographic uniformity at adh1. Moreover, levels of nucleotide sequence diversity differ by nearly an order of magnitude between the two loci. Genealogical analysis resolved two distinct clusters of "adh3" alleles (dimorphic sequence types) that coalesce roughly 3 million years ago. One type consists of accessions from the Middle East, and the other consists of accessions predominantly from the Near East. The two "adh3" sequence types are characterized by a high level of differentiation between clusters ( approximately 2.2%), which induces an overall excess of intermediate frequency variants in the pooled sample. Finally, there is evidence of intralocus recombination in the "adh3" data, despite the high level of self-fertilization characteristic of wild barley.  (+info)

Genetic evidence for different male and female roles during cultural transitions in the British Isles. (3/108)

Human history is punctuated by periods of rapid cultural change. Although archeologists have developed a range of models to describe cultural transitions, in most real examples we do not know whether the processes involved the movement of people or the movement of culture only. With a series of relatively well defined cultural transitions, the British Isles present an ideal opportunity to assess the demographic context of cultural change. Important transitions after the first Paleolithic settlements include the Neolithic, the development of Iron Age cultures, and various historical invasions from continental Europe. Here we show that patterns of Y-chromosome variation indicate that the Neolithic and Iron Age transitions in the British Isles occurred without large-scale male movements. The more recent invasions from Scandinavia, on the other hand, appear to have left a significant paternal genetic legacy. In contrast, patterns of mtDNA and X-chromosome variation indicate that one or more of these pre-Anglo-Saxon cultural revolutions had a major effect on the maternal genetic heritage of the British Isles.  (+info)

Isoenzyme characterization of Leishmania isolates from Lebanon and Syria. (4/108)

Leishmania parasites were isolated from 22 Lebanese and 5 Syrian patients with active skin lesions for whom the diagnosis was confirmed by histopathological examination. The isolates were characterized by starch gel electrophoresis and analysis of 13 enzyme systems. Eight Old-World reference strains were used for comparison. One Syrian isolate belonged to Leishmania major, and four Syrian and two Lebanese to Leishmania tropica. Contrary to expectations, the majority of Lebanese isolates were related to the Leishmania donovani complex, and more particularly Leishmania infantum.  (+info)

Variation and geographical distribution of the genotypes controlling the diagnostic spike morphology of two varieties of Aegilops caudata l. (5/108)

Aegilops caudata L. is an annual wild relative of wheat distributed over the northeastern Mediterranean basin. It consists of two taxonomic varieties, var. typica with awnless lateral spikelets and var.polyathera with awned lateral spikelets. To clarify the variation and the geographical distribution of the genotypes controlling the diagnostic spike morphology of the two taxonomic varieties, three crossing experiments were carried out. First, two varieties collected from nine sympatric populations in the Aegean islands were crossed reciprocally. All of the F1 hybrids were var. typica and the segregation ratio in the F2 generation was 3 typica: 1 polyathera. Secondly, 13 typica accessions collected from the entire distribution area of the variety were crossed with a common polyathera accession. The F1 hybrids involving eight typica accessions from Greece and West Anatolia were var. typica, while those involving five typica accessions from East Anatolia, Syria and Iraq were var. polyathera. Thirdly, the typica F1 hybrids between the Aegean and the Syrian typica accessions were backcrossed to the latter. Four of the seven BC1F1 plants obtained were var. typica, but the other three were var. polyathera. Based on these results, the following two conclusions were made. First, the awnless lateral spikelets characteristic of var. typica are due to two different genotypes: one is a dominant allele suppressing awn development on lateral spikelets and the other is a recessive allele(s) for awnless lateral spikelets with no dominant suppressor allele. Secondly, the former genotype occurs only in the western region of the distribution area of the species, while the latter occurs in the eastern region. The present results and the recent palaeopalynological evidence also suggested that var. polyathera, with more awns than var. typica, rapidly colonized Central Anatolia from the Levant or East Taurus/Zagros mountains arc after the last glacial period.  (+info)

Mutation in the ARH gene and a chromosome 13q locus influence cholesterol levels in a new form of digenic-recessive familial hypercholesterolemia. (6/108)

We studied a Syrian family with 3 children who had low-density lipoprotein cholesterol (LDL) concentrations of 13.3, 12.2, and 8.6 mmol/L, respectively. Three other siblings and the parents all had LDL values <4.52 mmol/L, suggesting an autosomal-recessive mode of inheritance. The extended pedigree had 66 additional persons with normal LDL values. A genome-wide scan in the core family with 427 markers showed support for linkage on both chromosomes 1 and 13. Markers on chromosome 1 revealed a 3.07 multipoint LOD score between 1p36.1-p35, an 18-cM interval. Surprisingly, we also found linkage to 13q22-q32, a 14-cM interval, with a 3.08 LOD score. We had identified this locus earlier as containing a gene strongly influencing LDL in another Arab family with autosomal-dominant familial hypercholesterolemia and in normal dizygotic twins. We found evidence for an interaction between these loci. We next genotyped our twin panel and confirmed linkage of the 1p36.1-p35 locus to LDL (P<0.002) in this normal population. Elucidation of ARH, the LDL receptor adaptor protein at chromosome 1p35, caused us to sequence that gene. We first identified the genomic structure of ARH gene and then sequenced the gene in our family. We found an intron 1 acceptor splice-site mutation. This mutation was not found in any other family members, in 31 nonrelated Syrian persons, or in 30 Germans. Our results underscore the importance of ARH on chromosome 1 and the chromosome 13q locus to LDL, not only in families with unusual illnesses, but also to the general population.  (+info)

Evidence for "deleted" or "silent" genes homozygous at the locus coding for the constant region of the gamma3 chain. (7/108)

Three uncommon stable Gm haplotypes, Gm3;23;--, Gm1,2,17;..;-- and Gm1,17;..;-- have been transmitted through 3 generations of two related Lebanese and Syrian families. No pathological consequence was noted in seven individuals, aged 14--65, whose sera were deficient for all the allotypes carried by the IgG3 chains. Among the different genetic events which could have produced these haplotypes (alteration of a regulatory gene, point mutation, gene hybridization, gene deletion), it appears that a structural deletion is the most probable explanation. The observed data can be explained by either a partial or a total deletion of the constant portion of the IgG3 heavy chain.  (+info)

Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. (8/108)

We detected, for the first time, the occurrence of vegetative incompatibility between different isolates of the arbuscular mycorrhizal fungal species Glomus mosseae. Vegetative compatibility tests performed on germlings belonging to the same isolate showed that six geographically different isolates were capable of self-anastomosing, and that the percentage of hyphal contacts leading to fusions ranged from 60 to 85%. Successful anastomoses were characterized by complete fusion of hyphal walls, protoplasm continuity and occurrence of nuclei in the middle of hyphal bridges. No anastomoses could be detected between hyphae belonging to different isolates, which intersected without any reaction in 49 to 68% of contacts. Microscopic examinations detected hyphal incompatibility responses in diverse pairings, consisting of protoplasm retraction from the tips and septum formation in the approaching hyphae, even before physical contact with neighboring hyphae. Interestingly, many hyphal tips showed precontact tropism, suggesting that specific recognition signals may be involved during this stage. The intraspecific genetic diversity of G. mosseae revealed by vegetative compatibility tests was confirmed by total protein profiles and internal transcribed spacer-restriction fragment length polymorphism profiles, which evidenced a higher level of molecular diversity between the two European isolates IMA1 and BEG25 than between IMA1 and the two American isolates. Since arbuscular mycorrhizal fungi lack a tractable genetic system, vegetative compatibility tests may represent an easy assay for the detection of genetically different mycelia and an additional powerful tool for investigating the population structure and genetics of these obligate symbionts.  (+info)