(1/3207) Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor.

Collagen type II-induced arthritis (CIA) in DBA/1 mice can be passively transferred to SCID mice with spleen B- and T-lymphocytes. In the present study, we show that infection ex vivo of splenocytes from arthritic DBA/1 mice with a retroviral vector, containing cDNA for the soluble form of human p75 receptor of tumour necrosis factor (TNF-R) before transfer, prevents the development of arthritis, bone erosion and joint inflammation in the SCID recipients. Assessment of IgG subclass levels and studies of synovial histology suggest that down-regulating the effector functions of T helper-type 1 (Th1) cells may, at least in part, explain the inhibition of arthritis in the SCID recipients. In contrast, the transfer of splenocytes infected with mouse TNF-alpha gene construct resulted in exacerbated arthritis and enhancement of IgG2a antibody levels. Intriguingly, infection of splenocytes from arthritic DBA/1 mice with a construct for mouse IL-10 had no modulating effect on the transfer of arthritis. The data suggest that manipulation of the immune system with cytokines, or cytokine inhibitors using gene transfer protocols can be an effective approach to ameliorate arthritis.  (+info)

(2/3207) Overexpression of human homologs of the bacterial DnaJ chaperone in the synovial tissue of patients with rheumatoid arthritis.

OBJECTIVE: To study the expression of the chaperone family of J proteins in the synovial tissue of patients with rheumatoid arthritis (RA) or osteoarthritis. METHODS: Rabbit antibodies specific for a synthetic peptide (pHSJ1: EAYEVLSDKHKREIYD), representing the most conserved part of all J domains thus far identified--among them the Drosophila tumor suppressor Tid56--were used in immunohistochemical analyses of frozen sections of synovial tissue and immunoblotting of protein extracts of adherent synovial cells. IgG specific for Tid56 was also used. RESULTS: Both antisera predominantly and intensely stained synovial lining cells from RA patients; other cells did not stain or stained only faintly. In immunoblots, anti-pHSJ1 specifically detected several bands with molecular weights of >74 kd (type I), 57-64 kd (type II), 41-48 kd (type III), and < or =36 kd (type IV). The strongest band detected in RA adherent synovial cells was the type II band, whereas in a B cell line, a type I band was prominent. CONCLUSION: Several potentially new members of the J family are described. The type II band represents the human homolog of the Drosophila Tid56 protein and is strongly expressed in RA synovial tissue.  (+info)

(3/3207) Establishment and characterization of nurse cell-like stromal cell lines from synovial tissues of patients with rheumatoid arthritis.

OBJECTIVE: To investigate the features of synovial stromal cells established from patients with rheumatoid arthritis (RA), and to define these cells as nurse cells. METHODS: Synovial nurse-like stromal cell lines (RA-SNCs) were established from patients with RA. These cell lines were examined for morphology, pseudoemperipolesis activity, cell surface markers, and cytokine production. The interaction between these RA-SNCs and a synovial tissue B cell clone was also examined. RESULTS: RA-SNCs had nurse cell activity. They spontaneously produced interleukin-6 (IL-6), IL-8, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Furthermore, they produced IL-1beta and tumor necrosis factor alpha and expressed higher levels of the other cytokines after coculture with the B cell clone. Proliferation and Ig production by the B cell clone were dependent on direct contact with RA-SNCs. CONCLUSION: These results indicate that the RA-SNCs were nurse cells. The findings suggest that RA-SNCs may play an important role in the pathogenesis of RA by producing large amounts of cytokines and maintaining infiltrating lymphocytes.  (+info)

(4/3207) Serum response elements activate and cAMP responsive elements inhibit expression of transcription factor Egr-1 in synovial fibroblasts of rheumatoid arthritis patients.

Analyzing the induction kinetics and promoter elements regulating the expression of the transcription factor Egr-1, we found elevated levels of Egr-1-encoding mRNA in synovial fibroblasts of rheumatoid arthritis (RA) patients when compared to controls. By contrast, synovial lymphocytes and macrophages do not show an elevated Egr-1 transcription. Therefore, the overexpression of Egr-1 may serve as a diagnostic marker to characterize synovial fibroblasts of RA patients. To study the regulatory mechanisms controlling Egr-1 expression we analyzed the function of transcription factor binding sites located in the Egr-1 promoter. Individual transcription factor binding sites within the Egr-1 promoter were specifically mutated and Egr-1 promoter activity was tested using reporter gene constructs. Our experiments demonstrate that serum response elements are the main positive regulators and binding to a cAMP responsive element represents the major negative regulator for Egr-1 expression in synovial fibroblasts. In addition, we functionally defined a new element, which was not yet described in the human Egr-1 promoter and which serves as a second negative regulatory element for Egr-1 expression. Therefore increased serum response factor activity or failure of Egr-1 repressing signals may account for Egr-1 overexpression in RA synovial fibroblasts.  (+info)

(5/3207) Inhibition of IL-6 and IL-8 induction from cultured rheumatoid synovial fibroblasts by treatment with aurothioglucose.

Gold compounds have long been used in the treatment of rheumatoid arthritis (RA). However, their actions in RA have not been clarified. In this study, we examined the effect of one of the monovalent gold compounds, aurothioglucose (AuTG), on the IL-1-induced production of IL-6, IL-8 and granulocyte macrophage colony stimulating factor (GM-CSF) from rheumatoid synovial fibroblasts (RSF) isolated from three RA patients. IL-6 and IL-8 induction but not GM-CSF induction was inhibited in most of the RSF after pretreatment with AuTG. Since gene expression of these cytokines is known to be under the control of a common transcription factor, NF-kappaB, the effect of AuTG on the cellular localization of NF-kappaB (p65 subunit) and on NF-kappaB-DNA binding was examined. Although AuTG treatment did not prevent NF-kappaB nuclear translocation, AuTG blocked the DNA-binding activity of NF-kappaB when examined in vitro. Morphologically, both metal-specific cell staining using p-dimethylaminobenzylidene rhodamine and transmission electron microscopic examinations demonstrated the accumulation of metal gold in the cytoplama and some organella (mitochondria and lysosomes) of the AuTG-treated RSF. These results indicate that one of the anti-rheumatic actions of AuTG might be through its inhibitory action on NF-kappaB.  (+info)

(6/3207) Nuclear factor-kappa B activity in T cells from patients with rheumatic diseases: a preliminary report.

OBJECTIVE: The NF-kappa B/Rel family of transcription factors regulates the expression of many genes involved in the immune or inflammatory response at the transcriptional level. The aim of this study was to determine whether distinctive patterns of NF-kappa B activation are seen in different forms of joint disease. METHODS: The DNA binding activity of these nucleoproteins was examined in purified synovial and peripheral T cells from patients with various chronic rheumatic diseases (12: four with rheumatoid arthritis; five with spondyloarthropathies; and three with osteoarthritis). RESULTS: Electrophoretic mobility shift assays disclosed two specific complexes bound to a NF-kappa B specific 32P-labelled oligonucleotide in nucleoproteins extracted from purified T cells isolated from synovial fluid and peripheral blood of patients with rheumatoid arthritis. The complexes consisted of p50/p50 homodimers and p50/p65 heterodimers. Increased NF-kappa B binding to DNA in synovial T cells was observed relative to peripheral T cells. In non-rheumatoid arthritis, binding of NF-kappa B in synovial T cells was exclusively mediated by p50/p50 homodimers. CONCLUSION: Overall, the results suggest that NF-kappa B may play a central part in the activation of infiltrating T cells in chronic rheumatoid arthritis. The activation of this nuclear factor is qualitatively different in rheumatoid synovial T cells to that in other forms of non-rheumatoid arthritis (for example, osteoarthritis, spondyloarthropathies).  (+info)

(7/3207) Down regulation by iron of prostaglandin E2 production by human synovial fibroblasts.

OBJECTIVE: To examine the effect of iron on the prostaglandin (PG) E2 production by human synovial fibroblasts in vitro. METHODS: Human synovial fibroblasts were isolated from synovial tissue of rheumatoid arthritis (RA) and osteoarthritis (OA) patients and cultured in medium. Synovial fibroblasts were stimulated by human recombinant interleukin (IL) 1 beta (0.1-10 ng/ml) with or without ferric citrate (Fe-citrate, 0.01-1 mM). The amount of PGE2 in the culture medium was measured by an enzyme linked immunosorbent assay. RESULTS: The production of PGE2 by the synovial fibroblasts was increased by stimulation with IL1 beta at all concentrations tested. Fe-citrate but not sodium citrate (Na-citrate) down regulated the production of PGE2 by the synovial fibroblasts, both with and without stimulation by IL1 beta. Fe-citrate inhibited the spontaneous PGE2 production by the cells in a dose dependent manner, and a maximum inhibition by Fe-citrate was observed at the concentration of 0.1 mM with IL1 beta stimulation. The down regulation by iron was reversed by the co-addition of desferrioxamine (100 micrograms/ml), an iron chelator. CONCLUSION: Iron down regulates the PGE2 production by synovial fibroblasts in vitro.  (+info)

(8/3207) Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis.

Plasma cells are found surrounding the inflammatory infiltrates of macrophages, T, and B cells in the synovial tissue of patients with rheumatoid and reactive arthritis. This characteristic arrangement suggests that in the synovial tissue CD20+ B cells differentiate into plasma cells. To examine clonal relationships, we have used micromanipulation to separately isolate CD20+ B cells and plasma cells from single infiltrates. DNA was extracted, and from both populations the VH/VL gene repertoires was determined. The data show that in the inflamed synovial tissue activated B cells are clonally expanded. During proliferation in the network of follicular dendritic cells, V gene variants are generated by the hypermutation mechanism. Surprisingly, we do not find identical rearrangements between CD20+ B cells and plasma cells. Nevertheless, the finding of clonally related plasma cells within single infiltrates suggests that these cells underwent terminal differentiation in the synovial tissue. These results indicate that B cell differentiation in the synovial tissue is a dynamic process. Whereas CD20+ B cells may turnover rapidly, plasma cells may well be long lived and thus accumulate in the synovial tissue. The analysis of individual B cells recovered from synovial tissue opens a new way to determine the specificity of those cells that take part in the local immune reaction. This will provide new insights into the pathogenesis of chronic inflammatory diseases like rheumatoid or reactive arthritis.  (+info)