Presynaptic strontium dynamics and synaptic transmission. (49/11810)

Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium.  (+info)

Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. (50/11810)

Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral-CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral-CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.  (+info)

Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. (51/11810)

Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.  (+info)

Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. (52/11810)

Transcranial magnetic stimulation (TMS) has become a promising treatment of affective disorders in humans, yet the neuronal basis of its long-lasting effects in the brain is still unknown. We studied acute and lasting effects of TMS on reactivity of the rat hippocampus to stimulation of the perforant path. Application of TMS to the brain of the anesthetized rat caused a dose-dependent transient increase in population spike (PS) response of the dentate gyrus to perforant path stimulation. In addition, TMS caused a marked decrease in inhibition and an increase in paired-pulse potentiation of reactivity to stimulation of the perforant path. Also, TMS suppressed the ability of fenfluramine (FFA), a serotonin releaser, to potentiate PS response to perforant path stimulation. Chronic TMS did not affect single population spikes but caused an increase in paired-pulse potentiation, which was still evident 3 weeks after the last of seven daily TMS treatments. After chronic TMS, FFA was ineffective in enhancing reactivity to perforant path stimulation, probably because it lost the ability to release serotonin. In addition, the beta adrenergic receptor agonist isoproterenol, which caused an increase in PS in the control rats, failed to do so in the TMS-treated rats. These results indicate that TMS produces a long-term reduction in efficacy of central modulatory systems.  (+info)

A2B adenosine receptors mediate relaxation of the pig intravesical ureter: adenosine modulation of non adrenergic non cholinergic excitatory neurotransmission. (53/11810)

1. The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. 2. In U46619 (10(-7) M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10(-6) M), adenosine and related analogues induced relaxations with the following potency order: 5'-N-ethylcarboxamidoadenosine (NECA) = 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA) = 2-chloroadenosine (2-CA) > adenosine > cyclopentyladenosine (CPA) = N6-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) = 2-[p-(carboxyethyl)-phenylethylamino]-5'-N-ethylcarboxamidoaden os ine (CGS21680). 3. Epithelium removal or incubation with indomethacin (3 x 10(-6) M) and L-N(G)-nitroarginine (L-NOARG, 3 x 10(-5) M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 4. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10(-8) M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3 x 10(-8) M and 10(-7) M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10(-5) M) and DPCPX (10(-6) M), which block A1/A2-receptors, reduced such relaxations. 5. In strips treated with guanethidine (10(-5) M), atropine (10(-7) M), L-NOARG (3 x 10(-5) M) and indomethacin (3 x 10(-6) M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10(-4) M) induced contractions of preparations. 8-PT (10(-5) M) increased both contractions. DPCPX (10(-8) M), NECA (10(-4) M), CPCA, (10(-4) M) and 2-CA (10(-4) M) did not alter the contractions to EFS. 6. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids or NO, through activation of A2B-receptors located in the smooth muscle. This relaxation may modulate the ureteral NANC excitatory neurotransmission through a postsynaptic mechanism.  (+info)

Two populations of sympathetic neurons project selectively to mesenteric artery or vein. (54/11810)

The objective of this study was to determine whether sympathetic neurons of the inferior mesenteric ganglion (IMG) projecting to mesenteric arteries could be distinguished by their localization, neurochemical phenotype, and electrophysiological properties from neurons projecting to mesenteric veins. In an in vitro intact vasculature-IMG preparation, neurons were labeled following intraluminal injection of Fluoro-Gold or rhodamine beads into the inferior mesenteric artery (IMA) or vein (IMV). The somata of neurons projecting to IMA were localized in the central part of the IMG, whereas those projecting to IMV were localized more peripherally. None of the labeled neurons was doubly labeled. Neuropeptide Y immunoreactivity was found in 18.9% of neurons innervating the IMA, but not in neurons innervating the IMV. Identified neurons were dissociated and characterized using whole cell patch-clamp recording. After direct soma depolarization, all of the labeled arterial and venous neurons were classified as tonic firing, compared with only 40% of unlabeled neurons; the remaining 60% of unlabeled neurons were phasic firing. The results indicate that IMG neurons projecting to mesenteric arteries are distinct from neurons projecting to mesenteric veins.  (+info)

Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. (55/11810)

Our previous work on Drosophila synapses has suggested that two vesicle populations possessing different recycling pathways, a fast pathway emanating from the active zone and a slower pathway emanating from sites away from the active zone, exist in the terminal. The difference in recycling time between these two pathways has allowed us to create a synapse that possesses the small, active zone subpopulation without the larger, nonactive zone population. Synapses were depleted using the temperature-sensitive endocytosis mutant, shibire, which reversibly blocks vesicle recycling at the restrictive temperature. In the depleted state, both the excitatory junction potential (EJP) and spontaneous release are abolished. After shibire-induced depletion, the active zone population begins to reform within 30 s at the permissive temperature, whereas the nonactive zone population does not begin to reform until approximately 10-15 min later. Evoked release recovered at approximately the same time as the active zone population. During the time when the active zone population existed in the terminal without the nonactive zone population, enough transmitter release was available to sustain a normal evoked response for many minutes at frequencies above those produced during normal activity (flight) by this motor neuron. When only the active zone population existed in the terminal, the frequency of spontaneous release was greatly attenuated and possessed abnormal release characteristics. Spontaneous release recovered its predepletion frequency and release characteristics only after the nonactive zone population was reformed.  (+info)

Calcium channels involved in synaptic transmission from reticulospinal axons in lamprey. (56/11810)

The pharmacology of calcium channels involved in glutamatergic synaptic transmission from reticulospinal axons in the lamprey spinal cord was analyzed with specific agonists and antagonists of different high-voltage activated calcium channels. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) induced a large decrease of the amplitude of reticulospinal-evoked excitatory postsynaptic potentials (EPSPs). The P/Q-type calcium channel blocker omega-agatoxin IVA (omega-Aga) also reduced the amplitude of the reticulospinal EPSPs, but to a lesser extent than omega-CgTx. The dihydropyridine agonist Bay K and antagonist nimodipine had no effect on the amplitude of the reticulospinal EPSP. Combined application of omega-CgTx and omega-Aga strongly decreased the amplitude the EPSPs but was never able to completely block them, indicating that calcium channels insensitive to these toxins (R-type) are also involved in synaptic transmission from reticulospinal axons. We have previously shown that the group III metabotropic glutamate receptor agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) mediates presynaptic inhibition at the reticulospinal synapse. To test if this presynaptic effect is mediated through inhibition of calcium influx, the effect of L-AP4 on reticulospinal transmission was tested before and after blockade of N-type channels, which contribute predominantly to transmitter release at this synapse. Blocking the N-type channels with omega-CgTx did not prevent inhibition of reticulospinal synaptic transmission by L-AP4. In addition, L-AP4 had no affect on the calcium current recorded in the somata of reticulospinal neurons or on the calcium component of action potentials in reticulospinal axons. These results show that synaptic transmission from reticulospinal axons in the lamprey is mediated by calcium influx through N-, P/Q- and R-type channels, with N-type channels playing the major role. Furthermore, presynaptic inhibition of reticulospinal transmission by L-AP4 appears not to be mediated through inhibition of presynaptic calcium channels.  (+info)