A monoclonal antibody, 3A10, recognizes a specific amino acid sequence present on a series of developmentally expressed brain proteins. (1/482)

Immunoblotting showed that a monoclonal antibody, 3A10, binds to a series of rat brain-specific antigens with molecular masses of 150-, 120-, 118-, 106-, 104-, 79-, and 77-kDa. The expression of 3A10 antigens is dependent on the developmental stage of the brain; only the 106-kDa antigen is detected during embryonic stages of rat brain development, while the expression of the remaining 6 antigens starts after birth and reaches a maximum during postnatal days 15-21. Detection of the 3A10 antigens in cultured neuronal and glial cells derived from cerebral cortices of rat brain at embryonic day 18 showed that the 77-, 79-, 106-, and 150-kDa antigens are specifically expressed in neuronal cells. The 77-kDa antigen was purified and identified as synapsin I by amino acid sequence analyses of the peptide fragments isolated after Achromobacter protease I treatment. During the isolation of 3A10-reactive proteins by immunological screening of cDNA libraries constructed from adult rat brain, we found that all of the 3A10-reactive clones contain nucleotide sequences encoding the unique amino acid sequence TRSP(S, R,G)P. Analyses of 3A10-binding to various synthetic peptides showed that the monoclonal antibody recognizes a specific conformational structure formed by either the TRSPXP sequence or similar amino acid sequences that are expressed on a series of developmentally expressed brain proteins.  (+info)

Site-specific phosphorylation of synapsin I by Ca2+/calmodulin-dependent protein kinase II in pancreatic betaTC3 cells: synapsin I is not associated with insulin secretory granules. (2/482)

Increasing evidence supports a physiological role of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in the secretion of insulin from the pancreatic beta-cell, but the precise sites of action are not known. A role of this enzyme in neuroexocytosis is implicated by its phosphorylation of a vesicle-associated protein, synapsin I. Because of emerging similarities to the neuron with respect to exocytotic mechanisms, the expression and phosphorylation of synapsin I in the beta-cell have been studied. Synapsin I expression in clonal mouse beta-cells (betaTC3) and primary rat islet beta-cells was initially confirmed by immunoblot analysis. By immunoprecipitation, in situ phosphorylation of synapsin I was induced in permeabilized betaTC3 cells within a Ca2+ concentration range shown to activate endogenous CaM kinase II under identical conditions. Proteolytic digests of these immunoprecipitates revealed that calcium primarily induced the increased phosphorylation of sites identified as CaM kinase II-specific and distinct from protein kinase A-specific sites. Immunofluorescence and immunogold electron microscopy verified synapsin I expression in betaTC3 cells and pancreatic slices but demonstrated little if any colocalization of synapsin I with insulin-containing dense core granules. Thus, although this study establishes that synapsin I is a substrate for CaM kinase II in the pancreatic beta-cell, this event appears not to be important for the mobilization of insulin granules.  (+info)

From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. (3/482)

Neuronal plasticity and synaptic remodeling play important roles during the development of the invertebrate nervous system. In addition, structural neuroplasticity as a result of long-term environmental changes, behavioral modifications, age, and experience have been demonstrated in the brains of sexually mature insects. In adult vertebrates, persistent neurogenesis is found in the granule cell layer of the mammalian hippocampus and the subventricular zone, as well as in the telencephalon of songbirds, indicating that persistent neurogenesis, which is presumably related to plasticity and learning, may be an integral part of the normal biology of the mature brain. In decapod crustaceans, persistent neurogenesis among olfactory projection neurons is a common principle that shapes the adult brain, indicating a remarkable degree of life-long structural plasticity. The present study closes a gap in our knowledge of this phenomenon by describing the continuous cell proliferation and gradual displacement of proliferation domains in the central olfactory pathway of the American lobster Homarus americanus from early embryonic through larval and juvenile stages into adult life. Neurogenesis in the deutocerebrum was examined by the in vivo incorporation of bromodeoxyuridine, and development and structural maturation of the deutocerebral neuropils were studied using immunohistochemistry against Drosophila synapsin. The role of apoptotic cell death in shaping the developing deutocerebrum was studied using the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling method, combined with immunolabeling using an antiphospho histone H3 mitosis marker. Our results indicate that, in juvenile and adult lobsters, birth and death of olfactory interneurons occur in parallel, suggesting a turnover of these cells. When the persistent neurogenesis and concurrent death of interneurons in the central olfactory pathway of the crustacean brain are taken into account with the life-long turnover of olfactory receptor cells in crustacean antennules, a new, highly dynamic picture of olfaction in crustaceans emerges.  (+info)

Synapsins as regulators of neurotransmitter release. (4/482)

One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron-specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin-based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin-dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well-documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.  (+info)

Impairment of inhibitory synaptic transmission in mice lacking synapsin I. (5/482)

Deletion of the synapsin I genes, encoding one of the major groups of proteins on synaptic vesicles, in mice causes late onset epileptic seizures and enhanced experimental temporal lobe epilepsy. However, mice lacking synapsin I maintain normal excitatory synaptic transmission and modulation but for an enhancement of paired-pulse facilitation. To elucidate the cellular basis for epilepsy in mutants, we examined whether the inhibitory synapses in the hippocampus from mutant mice are intact by electrophysiological and morphological means. In the cultured hippocampal synapses from mutant mice, repeated application of a hypertonic solution significantly suppressed the subsequent transmitter release, associated with an accelerated vesicle replenishing time at the inhibitory synapses, compared with the excitatory synapses. In the mutants, morphologically identifiable synaptic vesicles failed to accumulate after application of a hypertonic solution at the inhibitory preterminals but not at the excitatory preterminals. In the CA3 pyramidal cells in hippocampal slices from mutant mice, inhibitory postsynaptic currents evoked by direct electrical stimulation of the interneuron in the striatum oriens were characterized by reduced quantal content compared with those in wild type. We conclude that synapsin I contributes to the anchoring of synaptic vesicles, thereby minimizing transmitter depletion at the inhibitory synapses. This may explain, at least in part, the epileptic seizures occurring in the synapsin I mutant mice.  (+info)

Homo- and heterodimerization of synapsins. (6/482)

In vertebrates, synapsins constitute a family of synaptic vesicle proteins encoded by three genes. Synapsins contain a central ATP-binding domain, the C-domain, that is highly homologous between synapsins and evolutionarily conserved in invertebrates. The crystal structure of the C-domain from synapsin I revealed that it constitutes a large (>300 amino acids), independently folded domain that forms a tight dimer with or without bound ATP. We now show that the C-domains of all synapsins form homodimers, and that in addition, C-domains from different synapsins associate into heterodimers. This conclusion is based on four findings: 1) in yeast two-hybrid screens with full-length synapsin IIa as a bait, the most frequently isolated prey cDNAs encoded the C-domain of synapsins; 2) quantitative yeast two-hybrid protein-protein binding assays demonstrated pairwise strong interactions between all synapsins; 3) immunoprecipitations from transfected COS cells confirmed that synapsin II heteromultimerizes with synapsins I and III in intact cells, and similar results were obtained with bacterial expression systems; and 4) quantification of the synapsin III level in synapsin I/II double knockout mice showed that the level of synapsin III is decreased by 50%, indicating that heteromultimerization of synapsin III with synapsins I or II occurs in vivo and is required for protein stabilization. These data suggest that synapsins coat the surface of synaptic vesicles as homo- and heterodimers in which the C-domains of the various subunits have distinct regulatory properties and are flanked by variable C-terminal sequences. The data also imply that synapsin III does not compensate for the loss of synapsins I and II in the double knockout mice.  (+info)

Synapsins as major neuronal Ca2+/S100A1-interacting proteins. (7/482)

The mammalian S100A1 protein can activate the invertebrate myosin-associated giant protein kinase twitchin in a Ca(2+)-dependent manner by more than 1000-fold in vitro; however, no mammalian S100-dependent protein kinases are known. In an attempt to identify novel mammalian Ca(2+)/S100A1-regulated protein kinases, brain extracts were subjected to combined Ca(2+)-dependent affinity chromatography with S100A1 and an ATP analogue. This resulted in the purification to near-homogeneity of the four major synapsin isoforms Ia, Ib, IIa and IIb. All four synapsins were specifically affinity-labelled with the ATP analogue 5'-p-fluorosulphonylbenzoyladenosine. S100A1 bound to immobilized synapsin IIa in BIAcore experiments in a Ca(2+)-dependent and Zn(2+)-enhanced manner with submicromolar affinity; this interaction could be competed for with synthetic peptides of the proposed S100A1-binding sites of synapsin. Double-labelling confocal immunofluorescence microscopy demonstrated that synapsins and S100A1 are both present in the soma and neurites of PC12 cells, indicating their potential to interact in neurons in vivo.  (+info)

A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. (8/482)

Synapsins constitute a family of synaptic vesicle proteins essential for regulating neurotransmitter release. Only two domains are conserved in all synapsins: a short N-terminal A domain with a single phosphorylation site for cAMP-dependent protein kinase (PKA) and CaM Kinase I, and a large central C domain that binds ATP and may be enzymatic. We now demonstrate that synapsin phosphorylation in the A domain, at the only phosphorylation site shared by all synapsins, dissociates synapsins from synaptic vesicles. Furthermore, we show that the A domain binds phospholipids and is inhibited by phosphorylation. Our results suggest a novel mechanism by which proteins reversibly bind to membranes using a phosphorylation-dependent phospholipid-binding domain. The dynamic association of synapsins with synaptic vesicles correlates with their role in activity-dependent plasticity.  (+info)