Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. (41/13503)

Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ-/- mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ-/- muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ-/- neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.  (+info)

Quantal size is correlated with receptor cluster area at glycinergic synapses in the rat brainstem. (42/13503)

1. Whole-cell patch electrode recordings of glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were obtained in neurons of the rat anteroventral cochlear nucleus (AVCN). Mean mIPSC peak amplitude was found to vary considerably between AVCN neurons (range, -19.1 to -317.9 pA; mean +/- s.d., -159.1 +/- 100.7 pA; 14 cells). 2. Immunolabelling of glycinergic receptor clusters in AVCN neurons was performed using antibodies against the glycine receptor clustering protein gephyrin. Measurements of the area of gephyrin immunoreactive clusters were obtained using confocal fluorescence microscopy. These measurements showed a large variability in cluster area, not only in the same cell (mean coefficient of variation, c.v., 0.66 +/- 0.18; 16 cells), but also in mean cluster area between cells (range, 0.21-0.84 microm2; 16 cells). 3. A possible relationship between mIPSC amplitude and receptor cluster area was investigated in a further series of experiments, in which mIPSCs recordings and immunolabelling of glycine receptor clusters were obtained for the same cells. In these experiments, AVCN neurons were identified using intracellular labelling with neurobiotin. Successful results using a combination of whole-cell recordings, neurobiotin identification and immunolabelling were obtained for a total of 10 AVCN neurons. Analysis of the results revealed a positive, statistically significant correlation between mean receptor cluster size and mean mIPSC amplitude (P < 0.05, 10 cells, Spearman's correlation test). 4. These results provide direct experimental evidence supporting a hypothesis of central glycinergic transmission in which synaptic strength may be regulated by changes in the size of the postsynaptic receptor region.  (+info)

Changes in properties and neurosteroid regulation of GABAergic synapses in the supraoptic nucleus during the mammalian female reproductive cycle. (43/13503)

1. GABAA receptor-mediated synaptic innervation of oxytocin neurones in the supraoptic nucleus (SON) was analysed in adult female rats going through their first reproductive cycle by recording the spontaneous inhibitory postsynaptic currents (sIPSCs) at six stages of female reproduction. 2. During pregnancy we observed a reduction in the interval between monoquantal sIPSCs. The synaptic current amplitude, current decay and neurosteroid sensitivity of postsynaptic GABAA receptors observed at this stage were not distinguishable from those measured in virgin stage SON. 3. Upon parturition an increase in monoquantal synaptic current decay occurred, whereas potentiation by the progesterone metabolite allopregnanolone (3alpha-OH-DHP) was suppressed. 4. Throughout a substantial part of the lactation period the decay of synaptic currents remained attenuated, whilst the potentiation by 3alpha-OH-DHP remained suppressed. 5. Several weeks after the end of lactation sIPSC intervals, their current decay velocity as well as the potentiation by 3alpha-OH-DHP were restored to pre-pregnancy levels, which is indicative of the cyclical nature of synaptic plasticity in the adult SON. 6. Competitive polymerase chain reaction (PCR) analysis showed that virgin animals expressed alpha1 and alpha2 GABAA receptor subunit mRNA at a relative ratio of 2 : 1 compared with beta-actin. After pregnancy both alpha1 and alpha2 subunit mRNA levels were transiently increased, although at a relative ratio of 1 : 4, in line with the hypothesis that alpha2 plays a large role in postsynaptic receptor functioning. During post-lactation both alpha subunits were downregulated. 7. We propose that synaptic remodelling in the SON during pregnancy includes changes in the putative number of GABA release sites per neurone. At parturition, and during the two consecutive weeks of lactation, a subtype of postsynaptic GABAA receptors was observed, distinct from the one being expressed before and during pregnancy. Synaptic current densities, calculated in order to compare the impact of synaptic inhibition, showed that, in particular, the differences in 3alpha-OH-DHP potentiation of these two distinct GABAA receptor subtypes produce robust shifts in the impact of synaptic inhibition of oxytocin neurones at the different stages of female reproduction.  (+info)

Calcium dynamics in the extracellular space of mammalian neural tissue. (44/13503)

In the brain, hundreds of intracellular processes are known to depend on calcium influx; hence any substantial fluctuation in external calcium ([Ca2+]o) is likely to engender important functional effects. Employing the known scales and parameters of mammalian neural tissue, we introduce and justify a computational approach to the hypothesis that large changes in local [Ca2+]o will be part of normal neural activity. Using this model, we show that the geometry of the extracellular space in combination with the rapid movement of calcium through ionic channels can cause large external calcium fluctuations, up to 100% depletion in many cases. The exact magnitude of a calcium fluctuation will depend on 1) the size of the consumption zone, 2) the local diffusion coefficient of calcium, and 3) the geometrical arrangement of the consuming elements. Once we have shown that using biologically relevant parameters leads to calcium changes, we focus on the signaling capacity of such concentration fluctuations. Given the sensitivity of neurotransmitter release to [Ca2+]o, the exact position and timing of neural activity will delimit the terminals that are able to release neurotransmitter. Our results indicate that mammalian neural tissue is engineered to generate significant changes in external calcium concentrations during normal activity. This design suggests that such changes play a role in neural information processing.  (+info)

Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. (45/13503)

Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral-CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral-CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.  (+info)

Quantitative fine-structural analysis of olfactory cortical synapses. (46/13503)

To determine the extent to which hippocampal synapses are typical of those found in other cortical regions, we have carried out a quantitative analysis of olfactory cortical excitatory synapses, reconstructed from serial electron micrograph sections of mouse brain, and have compared these new observations with previously obtained data from hippocampus. Both superficial and deep layer I olfactory cortical synapses were studied. Although individual synapses in each of the areas-CA1 hippocampus, olfactory cortical layer Ia, olfactory cortical area Ib-might plausibly have been found in any of the other areas, the average characteristics of the three synapse populations are distinct. Olfactory cortical synapses in both layers are, on average, about 2.5 times larger than their hippocampal counterparts. The layer Ia olfactory cortical synapses have fewer synaptic vesicles than do the layer Ib synapses, but the absolute number of vesicles docked to the active zone in the layer Ia olfactory cortical synapses is about equal to the docked vesicle number in the smaller hippocampal synapses. As would be predicted from studies on hippocampus that relate paired-pulse facilitation to the number of docked vesicles, the synapses in layer 1a exhibit facilitation, whereas the ones in layer 1b do not. Although hippocampal synapses provide as a good model system for central synapses in general, we conclude that significant differences in the average structure of synapses from one cortical region to another exist, and this means that generalizations based on a single synapse type must be made with caution.  (+info)

Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia. (47/13503)

The incidence of meiotic abnormalities and their relationship with different spermatogenic parameters was assessed in 103 male patients with presumably idiopathic severe oligoasthenozoospermia (motile sperm concentration < or = 1.5 x 10(6)/ml). Meiosis on testicular biopsies was independently evaluated by two observers. Meiotic patterns included normal meiosis and two meiotic abnormalities, i.e. severe arrest and synaptic anomalies. A normal pattern was found in 64 (62.1%), severe arrest in 21 (20.4%) and synaptic anomalies in 18 (17.5%). The overall rate of meiotic abnormalities was 37.9%. Most (66.7%) meiotic abnormalities occurred in patients with a sperm concentration < or = 1 x 10(6)/ml. In this group, total meiotic abnormalities were found in 57.8% of the patients; of these, 26.7% had synaptic anomalies. When the sperm concentration was < or = 0.5 x 10(6)/ml, synaptic anomalies were detected in 40% of the patients. In patients with increased follicle stimulating hormone (FSH) concentrations, total meiotic abnormalities occurred in 54.8% (synaptic anomalies in 22.6%). There were statistically significant differences among the three meiotic patterns in relation to sperm concentration (P < 0.001) and serum FSH concentration (P < 0.05). In the multivariate analysis, sperm concentration < or = 1 x 10(6)/ml and/or FSH concentration > 10 IU/l were the only predictors of meiotic abnormalities.  (+info)

Characterization of phosphotyrosine containing proteins at the cholinergic synapse. (48/13503)

Tyrosine phosphorylation has been associated with several aspects of the regulation of cholinergic synaptic function, including nicotinic acetylcholine receptor (AChR) desensitization as well as the synthesis and clustering of synaptic components. While some progress has been made in elucidating the molecular events initiating such signals, the downstream targets of these tyrosine kinase pathways have yet to be characterized. In this paper we have used molecular cloning techniques to identify proteins which are tyrosine phosphorylated at the cholinergic synapse. Phosphotyrosine containing proteins (PYCPs) were isolated from the electric organ of Torpedo californica by anti-phosphotyrosine immunoaffinity chromatography. Peptide sequencing and expression cloning then identified the isolated proteins. The proteins identified included heat shock protein 90, type III intermediate filament from Torpedo electric organ, alpha-fodrin, beta-tubulin, actin and rapsyn. These tyrosine phosphorylated proteins may play a role in the regulation of synaptic function by tyrosine kinases.  (+info)