The fine structural organization of the cuneate nucleus in the monkey (Macaca fascicularis). (17/13503)

The fine structure of the cuneate nucleus of the monkey (Macaca fascicularis) has been studied. The neurons were classified into three groups according to their nuclear morphology, the arrangement of the rough endoplasmic reticulum (RER) and the appearance of the Golgi complexes. Group I neurons had a regular nucleus and contained abundant cytoplasm in which were found well-developed RER and Golgi complexes. Group II neurons had a slightly irregular nucleus and a variable arrangement of the RER and Golgi complexes. Group III neurons were characterized by a deeply indented nucleus, and scanty cytoplasm in which the cytoplasmic organelles were poorly developed. Group II neurons were the most commonly encountered while Group I neurons were the rarest. Axon terminals contained either round of flattened vesicles. Axon terminals and dendrites commonly formed synaptic complexes. In one type the axon terminal, containing round vesicles, formed the central element, which is presynaptic to the dendrites surrounding it; in addition it is postsynaptic to axon terminals containing flattened vesicles. In another type a large dendrite formed the central element which is postsynaptic to axon terminals containing round or flattened vesicles.  (+info)

Blockade of N-methyl-D-aspartate receptor activation suppresses learning-induced synaptic elimination. (18/13503)

Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0-2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events.  (+info)

Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. (19/13503)

Although extracellular adenosine concentrations in brain are increased markedly by a variety of stimuli such as hypoxia and ischemia, it has been difficult to demonstrate large increases in adenosine with stimuli that do not result in pathological tissue damage. The present studies demonstrate that increasing the temperature at which rat hippocampal brain slices are maintained (typically from 32.5 to 38.5 degrees C) markedly inhibits excitatory synaptic transmission. This effect was reversible on cooling, readily repeatable, and was blocked by A1 receptor antagonists and by adenosine deaminase, suggesting that it was mediated by increased activation of presynaptic adenosine A1 receptors by endogenous adenosine. This increase in adenosinergic inhibition was not a response to hyperthermia per se, because it could be elicited by temperatures that remained entirely within the hypothermic range (e. g., from 32.5 to 35.5 degrees C). The increased activity at A1 receptors appeared to be attributable to the direct release of adenosine via nucleoside transporters; the release of adenine nucleotides, linked to either the activation of NMDA receptors or the increased efflux of cAMP, appeared not to be involved. These results suggest that changes in brain temperature can alter the regulation of extracellular adenosine in rat brain slices and that increased adenosine release may be an important regulatory mechanism for countering increased excitability consequent to increased brain temperature.  (+info)

Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. (20/13503)

Dendritic spines receive most excitatory inputs in the vertebrate brain, but their function is still poorly understood. Using two-photon calcium imaging of CA1 pyramidal neurons in rat hippocampal slices, we investigated the mechanisms by which calcium enters into individual spines in the stratum radiatum. We find three different pathways for calcium influx: high-threshold voltage-sensitive calcium channels, NMDA receptors, and an APV-resistant influx consistent with calcium-permeable AMPA or kainate receptors. These pathways vary among different populations of spines and are engaged under different stimulation conditions, with peak calcium concentrations reaching >10 microM. Furthermore, as a result of the biophysical properties of the NMDA receptor, the calcium dynamics of spines are exquisitely sensitive to the temporal coincidence of the input and output of the neuron. Our results confirm that individual spines are chemical compartments that can perform coincidence detection. Finally, we demonstrate that functional studies and optical quantal analysis of single, identified synapses is feasible in mammalian CNS neurons in brain slices.  (+info)

Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. (21/13503)

Abnormal synaptic transmission has been hypothesized to be a cause of neuronal death resulting from transient ischemia, although the mechanisms are not fully understood. Here, we present evidence that synapses are markedly modified in the hippocampus after transient cerebral ischemia. Using both conventional and high-voltage electron microscopy, we performed two- and three-dimensional analyses of synapses selectively stained with ethanolic phosphotungstic acid in the hippocampus of rats subjected to 15 min of ischemia followed by various periods of reperfusion. Postsynaptic densities (PSDs) from both area CA1 and the dentate gyrus were thicker and fluffier in postischemic hippocampus than in controls. Three-dimensional reconstructions of selectively stained PSDs created using electron tomography indicated that postsynaptic densities became more irregular and loosely configured in postischemic brains compared with those in controls. A quantitative study based on thin sections of the time course of PSD modification indicated that the increase in thickness was both greater and more long-lived in area CA1 than in dentate gyrus. Whereas the magnitude of morphological change in dentate gyrus peaked at 4 hr of reperfusion (140% of control values) and declined thereafter, changes in area CA1 persisted and increased at 24 hr of reperfusion (191% of control values). We hypothesize that the degenerative ultrastructural alteration of PSDs may produce a toxic signal such as a greater calcium influx, which is integrated from the thousands of excitatory synapses onto dendrites, and is propagated to the neuronal somata where it causes or contributes to neuronal damage during the postischemic phase.  (+info)

Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. (22/13503)

We examined the effects of spontaneous or evoked episodes of rhythmic activity on synaptic transmission in several spinal pathways of embryonic day 9-12 chick embryos. We compared the amplitude of synaptic potentials evoked by stimulation of the ventrolateral funiculus (VLF), the dorsal or ventral roots, before and after episodes of activity. With the exception of the short-latency responses evoked by dorsal root stimulation, the potentials were briefly potentiated and then reduced for several minutes after an episode of rhythmic activity. Their amplitude progressively recovered in the interval between successive episodes. The lack of post-episode depression in the short-latency component of the dorsal root evoked responses is probably attributable to the absence of firing in cut muscle afferents during an episode of activity. The post-episode depression of VLF-evoked potentials was mimicked by prolonged stimulation of the VLF, subthreshold for an episode of activity. By contrast, antidromically induced motoneuron firing and the accompanying calcium entry did not depress VLF-evoked potentials recorded from the stimulated ventral root. In addition, post-episode depression of VLF-evoked synaptic currents was observed in voltage-clamped spinal neurons. Collectively, these findings suggest that somatic postsynaptic activity and calcium entry are not required for the depression. We propose instead that the mechanism may involve a form of long-lasting activity-induced synaptic depression, possibly a combination of transmitter depletion and ligand-induced changes in the postsynaptic current accompanying transmitter release. This activity-dependent depression appears to be an important mechanism underlying the occurrence of spontaneous activity in developing spinal networks.  (+info)

Brain-derived neurotrophic factor prevents low-frequency inputs from inducing long-term depression in the developing visual cortex. (23/13503)

Brain-derived neurotrophic factor (BDNF) is reported to enhance synaptic transmission and to play a role in long-term potentiation in hippocampus and neocortex. If so, a shortage or blockade of BDNF might lead to another form of synaptic plasticity, long-term depression (LTD). To test this possibility and to elucidate mechanisms if it is the case, EPSCs evoked by test stimulation of layer IV were recorded from layer II/III neurons in visual cortical slices of young rats in the whole-cell voltage-clamp mode. LTD was induced by low-frequency stimulation (LFS) at 1 Hz for 10-15 min if each pulse of the LFS was paired with depolarization of neurons to -30 mV but was not induced if their membrane potentials were kept at -70 mV. Such an LTD was blocked by exogenously applied BDNF, probably through presynaptic mechanisms. Suppression of endogenous BDNF activity by the anti-BDNF antibody or an inhibitor for BDNF receptors made otherwise ineffective stimuli (LFS without postsynaptic depolarization) effective for LTD induction, suggesting that endogenous BDNF may prevent low-frequency inputs from inducing LTD in the developing visual cortex.  (+info)

In vitro analog of operant conditioning in aplysia. II. Modifications of the functional dynamics of an identified neuron contribute to motor pattern selection. (24/13503)

Previously, an analog of operant conditioning was developed using the buccal ganglia of Aplysia, the probabilistic occurrences of a specific motor pattern (i.e., pattern I), a contingent reinforcement (i.e., stimulation of the esophageal nerve), and monotonic stimulation of a peripheral nerve (i.e., n.2,3). This analog expressed a key feature of operant conditioning (i.e., selective enhancement of the probability of occurrence of a designated motor pattern by contingent reinforcement). In addition, the training induced changes in the dynamical properties of neuron B51, an element of the buccal central pattern generator. To gain insights into the neuronal mechanisms that mediate features of operant conditioning, the present study identified a neuronal element that was critically involved in the selective enhancement of pattern I. We found that bursting activity in cell B51 contributed significantly to the expression of pattern I and that changes in the dynamical properties of this cell were associated with the selective enhancement of pattern I. These changes could be induced by an explicit association of reinforcement with random depolarization of B51. No stimulation of n.2,3 was required. These results indicate that the selection of a designated motor pattern by contingent reinforcement and the underlying neuronal plasticity resulted from the association of reinforcement with a component of central neuronal activity that contributes to a specific motor pattern. The sensory stimulus that allows for occurrences of different motor acts may not be critical for induction of plasticity that mediates the selection of a motor output by contingent reinforcement in operant conditioning.  (+info)