The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. (1/2800)

The gene encoding the Na/I symporter (NIS) is expressed at high levels only in thyroid follicular cells, where its expression is regulated by the thyroid-stimulating hormone via the second messenger, cyclic AMP (cAMP). In this study, we demonstrate the presence of an enhancer that is located between nucleotides -2264 and -2495 in the 5'-flanking region of the NIS gene and that recapitulates the most relevant aspects of NIS regulation. When fused to either its own or a heterologous promoter, the NIS upstream enhancer, which we call NUE, stimulates transcription in a thyroid-specific and cAMP-dependent manner. The activity of NUE depends on the four most relevant sites, identified by mutational analysis. The thyroid-specific transcription factor Pax8 binds at two of these sites. Mutations that interfere with Pax8 binding also decrease transcriptional activity of the NUE. Furthermore, expression of Pax8 in nonthyroid cells results in transcriptional activation of NUE, strongly suggesting that the paired-domain protein Pax8 plays an important role in NUE activity. The NUE responds to cAMP in both protein kinase A-dependent and -independent manners, indicating that this enhancer could represent a novel type of cAMP responsive element. Such a cAMP response requires Pax8 but also depends on the integrity of a cAMP responsive element (CRE)-like sequence, thus suggesting a functional interaction between Pax8 and factors binding at the CRE-like site.  (+info)

Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells. (2/2800)

BACKGROUND: The sodium/myo-inositol cotransporter (SMIT) and the betaine cotransporter (BGT1) are essential for the accumulation of myo-inositol and betaine, and hence cell survival in a hypertonic environment. The underlying molecular mechanism involves an increase in transcription of the SMIT and BGT1 genes through binding of a trans-acting factor to enhancer elements in the 5' flanking region of both genes, resulting in increased mRNA abundance and increased activity of the cotransporters. Current evidence regarding transcriptional and post-transcriptional regulation indicates that both cotransporters are regulated in parallel. METHODS: To investigate the signal transduction of hypertonic stress, we examined the effect of tyrosine kinase inhibitors and immunosuppressants on the hypertonicity-induced activity of the two cotransporters in Madin-Darby canine kidney (MDCK) cells. RESULTS: None of the agents studied affected BGT1 activity in isotonic or hypertonic conditions. Treatment of MDCK cells with genistein, a tyrosine kinase inhibitor, increased SMIT activity in hypertonic but not isotonic conditions. The stimulation of SMIT by genistein was accompanied by a parallel increase in mRNA abundance. In contrast, treating cells with tyrphostin A23, another tyrosine kinase inhibitor, or cyclosporine A, an immunosuppressant, inhibited SMIT activity in hypertonic cells. FK506, another immunosuppressant, increased SMIT activity, but only in isotonic conditions. CONCLUSIONS: These results provide the first evidence of divergent regulatory pathways modulating SMIT and BGT activity.  (+info)

Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. (3/2800)

BACKGROUND: Renal phosphate (Pi) reabsorption is regulated by dietary Pi intake, as well as in other ways. Changes in Pi reabsorption are associated with the modulation of sodium/Pi cotransporter type II (NaPi-2) protein abundance in the brush border membrane (BBM) of proximal tubules (PTs) and of renal NaPi-2 mRNA levels. In this study, we address whether the NaPi-2 protein and NaPi-2 mRNA distribution patterns in the renal cortex vary in parallel with changes of dietary Pi intake. METHODS: We investigated in cryosections of perfusion-fixed rat kidneys by in situ hybridization (ISH) and immunohistochemistry (IHC) the distribution patterns of NaPi-2 mRNA and of NaPi-2 protein one week, two hours, and four hours after changes in dietary Pi intake. RESULTS: NaPi-2 mRNA and NaPi-2 protein were present in PTs exclusively. In rats adapted to one week of high Pi intake, signals for NaPi-2 mRNA and NaPi-2 protein in cortical PTs were weak, except in the convoluted parts of PTs of juxtamedullary nephrons. After one week of low Pi intake, the ISH and IHC signals for NaPi-2 were high in PT segments in all cortical levels. The switch from a chronic high to a low Pi intake within two and four hours induced no increase and a slight increase, respectively, in the NaPi-2 mRNA signal in PTs of midcortical and of superficial nephrons, whereas in the BBM of these nephrons, NaPi-2 protein was markedly up-regulated. Two and four hours after switching from low to high Pi intake, the overall high ISH signal for NaPi-2 mRNA was unchanged, whereas NaPi-2 protein staining was drastically down-regulated in the BBM of PTs from superficial and midcortical nephrons. CONCLUSIONS: The marked changes in NaPi-2 protein abundance in the BBM, following altered dietary Pi intake, precede corresponding changes at the RNA level by several hours. Thus, the early adaptation to altered Pi intake involves mRNA-independent mechanisms. The up- or down-regulation of NaPi-2 protein abundance in the BBM and NaPi-2 mRNA in PT affects mainly midcortical and superficial nephrons.  (+info)

A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. (4/2800)

The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.  (+info)

Regulation of PiT-1, a sodium-dependent phosphate co-transporter in rat parathyroid glands. (5/2800)

A cDNA encoding an Na+-Pi co-transporter, termed rat PiT-1, has now been isolated from rat parathyroid. Expression of rat PiT-1 in Xenopus oocytes revealed that it possesses Na+-dependent Pi co-transport activity. The amount of PiT-1 mRNA in the parathyroid of vitamin D-deficient rats was reduced compared with that in normal animals, and increased markedly after administration of 1,25-dihydroxyvitamin D3. Furthermore, the abundance of PiT-1 mRNA in the parathyroid was much greater in rats fed a low-Pi diet than in those fed a high-Pi diet. Thus, rat PiT-1 may contribute to the effects of Pi and vitamin D on parathyroid function.  (+info)

Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. (6/2800)

ProP is an osmoregulatory compatible solute transporter in Escherichia coli K-12. Mutation proQ220::Tn5 decreased the rate constant for and the extent of ProP activation by an osmotic upshift but did not alter proP transcription or the ProP protein level. Allele proQ220::Tn5 was isolated, and the proQ sequence was determined. Locus proQ is upstream from prc (tsp) at 41.2 centisomes on the genetic map. The proQ220::Tn5 and prc phenotypes were different, however. Gene proQ is predicted to encode a 232-amino-acid, basic, hydrophilic protein (molecular mass, 25,876 Da; calculated isoelectric point, 9.66; 32% D, E, R, or K; 54.5% polar amino acids). The insertion of PCR-amplified proQ into vector pBAD24 produced a plasmid containing the wild-type proQ open reading frame, the expression of which yielded a soluble protein with an apparent molecular mass of 30 kDa. Antibodies raised against the overexpressed ProQ protein detected cross-reactive material in proQ+ bacteria but not in proQ220::Tn5 bacteria. ProQ may be a structural element that influences the osmotic activation of ProP at a posttranslational level.  (+info)

Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. (7/2800)

Potassium is an important macronutrient required for plant growth, whereas sodium (Na+) can be toxic at high concentrations. The wheat K+ uptake transporter HKT1 has been shown to function in yeast and oocytes as a high affinity K+-Na+ cotransporter, and as a low affinity Na+ transporter at high external Na+. A previous study showed that point mutations in HKT1, which confer enhancement of Na+ tolerance to yeast, can be isolated by genetic selection. Here we report on the isolation of mutations in new domains of HKT1 showing further large increases in Na+ tolerance. By selection in a Na+ ATPase deletion mutant of yeast that shows a high Na+ sensitivity, new HKT1 mutants at positions Gln-270 and Asn-365 were isolated. Several independent mutations were isolated at the Asn-365 site. N365S dramatically increased Na+ tolerance in yeast compared with all other HKT1 mutants. Cation uptake experiments in yeast and biophysical characterization in Xenopus oocytes showed that the mechanisms underlying the Na+ tolerance conferred by the N365S mutant were: reduced inhibition of high affinity Rb+ (K+) uptake at high Na+ concentrations, reduced low affinity Na+ uptake, and reduced Na+ to K+ content ratios in yeast. In addition, the N365S mutant could be clearly distinguished from less Na+-tolerant HKT1 mutants by a markedly decreased relative permeability for Na+ at high Na+ concentrations. The new mutations contribute to the identification of new functional domains and an amino acid in a loop domain that is involved in cation specificity of a plant high affinity K+ transporter and will be valuable for molecular analyses of Na+ transport mechanisms and stress in plants.  (+info)

Up-regulation of the Pit-2 phosphate transporter/retrovirus receptor by protein kinase C epsilon. (8/2800)

The membrane receptors for the gibbon ape leukemia retrovirus and the amphotropic murine retrovirus serve normal cellular functions as sodium-dependent phosphate transporters (Pit-1 and Pit-2, respectively). Our earlier studies established that activation of protein kinase C (PKC) by treatment of cells with phorbol 12-myristate 13-acetate (PMA) enhanced sodium-dependent phosphate (Na/Pi) uptake. Studies now have been carried out to determine which type of Na/Pi transporter (Pit-1 or Pit-2) is regulated by PKC and which PKC isotypes are involved in the up-regulation of Na/Pi uptake by the Na/Pi transporter/viral receptor. It was found that the activation of short term (2-min) Na/Pi uptake by PMA is abolished when cells are infected with amphotropic murine retrovirus (binds Pit-2 receptor) but not with gibbon ape leukemia retrovirus (binds Pit-1 receptor), indicating that Pit-2 is the form of Na/Pi transporter/viral receptor regulated by PKC. The PKC-mediated activation of Pit-2 was blocked by pretreating cells with the pan-PKC inhibitor bisindolylmaleimide but not with the conventional PKC isotype inhibitor Go 6976, suggesting that a novel PKC isotype is required to regulate Pit-2. Overexpression of PKCepsilon, but not of PKCalpha, -delta, or -zeta, was found to mimic the activation of Na/Pi uptake. To further establish that PKCepsilon is involved in the regulation of Pit-2, cells were treated with PKCepsilon-selective antisense oligonucleotides. Treatment with PKCepsilon antisense oligonucleotides decreased the PMA-induced activation of Na/Pi uptake. These results indicate that PMA-induced stimulation of Na/Pi uptake by Pit-2 is specifically mediated through activation of PKCepsilon.  (+info)