Sympathetic control of arterial membrane potential by ATP-sensitive K(+)-channels. (25/590)

Stimulation of perivascular nerve terminals leads to a release of various neurotransmitters such as norepinephrine, epinephrine, acetylcholine, nitric oxide, and calcitonin gene-related peptide (CGRP). Because some of these substances have been shown to cause smooth muscle hyperpolarization by direct or endothelium-dependent mechanisms, we hypothesized that the liberation of 1 or more of these transmitters may lead to neurogenic hyperpolarization in arterial muscle cells. The present study was designed to determine the presence or absence of neurogenic hyperpolarization and, if present, its underlying mechanisms in isolated rat mesenteric resistance arteries, through the use of conventional microelectrode techniques. The experiments were performed under the combined blockade of alpha-adrenoceptors and purinoceptors with phentolamine and suramin to eliminate depolarizing responses to nerve stimulation. Under these conditions, perivascular nerve stimulation (5 Hz, 30 seconds) evoked smooth muscle hyperpolarization (-3.3+/-0.3 mV, n=15), which was abolished by tetrodotoxin, indicating the neurogenic origin of the response. This neurogenic hyperpolarization was resistant to atropine, nitro-L-arginine, or CGRP8-37, a CGRP antagonist, but was abolished by guanethidine and beta-blocker propranolol. This hyperpolarization was also abolished by glibenclamide, an ATP-sensitive K(+) channel (K(ATP)) blocker, but was unaffected by apamin, a Ca(2+)-activated K(+) channel blocker. In separate experiments, exogenous norepinephrine caused glibenclamide-sensitive hyperpolarization in the presence of phentolamine. On the other hand, norepinephrine-induced depolarization in the absence of phentolamine was enhanced by propranolol. These findings suggest that neurally released catecholamines cause membrane hyperpolarization through the activation of K(ATP) by beta-adrenoceptors. Such hyperpolarization may play an important role in the control of arterial membrane potential by opposing alpha-adrenergic depolarization.  (+info)

Increase in renal medullary nitric oxide synthase activity protects from norepinephrine-induced hypertension. (26/590)

Studies were performed in conscious Sprague-Dawley rats to determine the role of the alpha(2)-adrenergic receptor-mediated increase in the renal medullary nitric oxide synthase (NOS) activity as a counterregulatory mechanism of blood pressure control in response to increased renal adrenergic stimulation. A subpressor dose of norepinephrine (NE, 8 microg. kg(-1). h(-1)) was infused intravenously, and NOS activity was determined with arginine-citrulline conversion by high-performance liquid chromatography in renal cortical and outer and inner medullary tissues. It was found that after 7 days of intravenous NE infusion, NOS activity was significantly higher in both the outer and inner medullary tissues (158+/-45 versus 30+/-24 pmol. mg(-1). h(-1) [outer medulla] and 5.1+/-0.7 versus 2.0+/-0.5 nmol. mg(-1). h(-1) [inner medulla] for NE-treated versus control rats, respectively). To determine whether the increase of NOS activity was mediated through renal medullary alpha(2)-receptors, the receptor antagonist rauwolscine (RAU, 1 microg. kg(-1). min(-1)) was infused via an implanted renal medullary interstitial catheter, and the consequences of intravenous NE administration were evaluated. NOS activity was significantly lower in the RAU-infused animals and did not increase with infusion of NE. To determine the systemic effects of the renal medullary alpha(2)-receptors, studies were performed to determine the consequences of chronic intravenous infusion of subpressor amounts of NE in the presence and absence of renal medullary alpha(2)-receptor inhibition. Under conditions in which RAU was continuously infused into the renal medulla, the same subpressor dose of NE caused sustained and reversible hypertension (mean arterial pressure increased from 120+/-3 to 131+/-3 mm Hg). Chronic blunting of the renal medullary NOS activity with N(G)-nitro-L-arginine methyl ester (75 microg. kg(-1). h(-1)) also enabled NE to produce a significant rise in mean arterial pressure (from 117+/-2 to 134+/-4 mm Hg). We conclude that the hypertensive effects of moderate elevations of renal adrenergic activity were chronically buffered by the alpha(2)-receptor-mediated increase in NOS activity within the renal medulla.  (+info)

Temperature-sensitive gating of cation current in guinea pig ileal muscle activated by hyperpolarization. (27/590)

The temperature dependence of hyperpolarization-activated current (I(h)) was investigated in freshly isolated guinea pig ileal smooth muscle cells, using the nystatin-perforated whole cell recording technique. Hyperpolarizing pulses (-50 to -120 mV) from -40 mV evoked time-dependent inward rectifying currents with a reversal potential of -33 mV and a slow activation time course well approximated by a single exponential. The properties of these currents, such as steady-state variables, dependence on external K, modification by norepinephrine, and blockade by Cs or ZD-7288, coincide well with those of the "classical" I(h) discovered in the sinoatrial node. Raising the temperature (range: 22-33 degrees C) accelerated the activation time course of this I(h) and shifted its 50% activation potential positively (12 mV/10 degree) with much less change in the maximum conductance. Based on a simple closed-open model, this can be explained by a high temperature dependence of the opening rate constant (temperature coefficient: 3.4). The activation profile of reconstructed I(h) at 36 degrees C suggests that a considerable overlap could occur between the ranges of I(h) activation and physiological membrane potential.  (+info)

Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). (28/590)

Cardiac fibroblasts (CFs) are an important cellular component of myocardial responses to injury and to hypertrophic stimuli. We studied G protein-coupled receptors to understand how CFs integrate signals that activate G(q), G(s), and G(i). We predicted that the second messenger pathways present in CFs were distinct from those in cardiac myocytes and that unique signaling interactions existed in the CFs. ANG II, bradykinin, ATP, and UTP stimulated inositol phosphate (IP) production 2.2- to 7-fold. Each of these agonists elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) via release from the intracellular Ca(2+) storage compartment. Endothelin-1 (ET-1), carbachol, and norepinephrine failed to increase either IP production or [Ca(2+)](i). Although agonists that activated IP and Ca(2+) transients had no effect on cAMP production when administered alone, these agents potentiated the beta(2)-adrenergic response two- to fourfold. Hormones known to inhibit adenylyl cyclase activity in cardiac myocytes, such as ET-1 and carbachol, failed to lower the beta-adrenergic response in fibroblasts. Order of potency and inhibitor data indicate that the functional receptor subtypes in these cells are beta(2), P2Y(2), and AT(1) for isoproterenol, ATP, and ANG II, respectively. We conclude that CFs express functional G protein-linked receptors that couple to G(q) and G(s), with little or no coupling to G(i). The expression of receptors and their coupling to G(q)- but not to G(i)-linked responses distinguishes the signaling in CFs from that in myocytes. Furthermore, agonists that activate G(q) in CFs potentiate stimulation of G(s), an example of signaling cross talk not observed in adult myocytes. These data suggest that G protein-mediated signaling in CFs is unique and may contribute to the specificity of hormone and drug action on individual cell types within the heart.  (+info)

Rapid analysis of amphetamine, methamphetamine, MDA, and MDMA in urine using solid-phase microextraction, direct on-fiber derivatization, and analysis by GC-MS. (29/590)

A rapid, sensitive, and solvent-free procedure for the simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethamphetamine (MDMA) in urine was developed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring mode. A headspace vial containing the urine sample, NaOH, NaCl, and amphetamine-d3 as the internal standard was heated at 100 degrees C for 20 min. A polydimethylsiloxane fiber was maintained in the vial headspace for 10 min in order to adsorb the amphetaminic compounds, which were subsequently derivatized by exposing the fiber to trifluoroacetic anhydride for 20 min in the headspace of another vial maintained at 60 degrees C for 20 min. The trifluoroacetyl derivatives were desorbed in the GC injection port for 5 min. Several parameters were considered during the method optimization process. These included a comparison of SPME with or without headspace, the required derivatization procedure, and the influence of temperature on the headspace extraction and derivatization methods. The optimized method was validated for the four compounds tested. Calibration curves showed linearity in the range 50-1000 ng/mL (r = 0.9946-0.9999). Recovery data were 71.89-103.24%. The quantitation limits were 10 ng/mL for amphetamine and methamphetamine and 20 ng/mL for MDA and MDMA. All of these data recommend the applicability of the method for use in the analytical routine of a forensic laboratory.  (+info)

Effect of high Ba(2+) on norepinephrine-induced inhibition of N-type calcium current in bullfrog sympathetic neurons. (30/590)

The voltage-dependent inhibition of N-type calcium current by neurotransmitters is the best-understood example of neuronal calcium channel inhibition. One of the mechanisms by which this pathway is thought to inhibit the calcium current is by reducing the permeation of divalent cations through the channel. In this study one prediction of this hypothesis was examined, that high concentrations of divalent cations reduce the maximum neurotransmitter-induced inhibition. Norepinephrine (NE)-induced inhibition was compared in external solutions containing either 2 or 100 mM Ba(2+). Initially, NE dose-response curves were generated by averaging data from many neurons, and it was found that the relationship was right shifted in the high-Ba(2+) external solution without an effect on maximum inhibition. The IC(50) was 0.6 and 3 microM in 2 and 100 mM Ba(2+), respectively. This shift was verified by comparing the effect of NE on single neurons exposed to both 2 and 100 mM Ba(2+). The inhibition induced by 1 microM NE was reduced in 100 mM Ba(2+) compared with that in 2 mM Ba(2+). However, the response to 100 microM NE was identical between high and low Ba(2+). Thus, divalent cations appear to act as a competitive inhibitor of NE binding, which likely results from these ions' interacting with negatively charged amino acids that are important for catecholamine binding to adrenergic receptors. Because the maximum inhibition induced by NE was similar in low and high Ba(2+), the effect of inhibition on single N-type calcium channels was not altered by the divalent cation concentration.  (+info)

Regulated von Willebrand factor secretion is associated with agonist-specific patterns of cytoskeletal remodeling in cultured endothelial cells. (31/590)

von Willebrand factor (vWF), an adhesive glycoprotein involved in primary hemostasis, is stored and released from endothelial secretory granules called Weibel-Palade bodies. Regulated secretion occurs in reaction either to [Ca(2+)](i)-raising agents (histamine or thrombin) or to cAMP-raising agents (epinephrine, adenosine, or forskolin). We investigated the pattern of release and the cytoskeletal requirements for secretion in response to these 2 classes of agonists. Secretion induced by [Ca(2+)](i)-raising agents involves peripheral and central granules and is inhibited by colchicine-induced microtubule disruption. It is accompanied by Rho-dependent stress fiber formation and cell retraction. Secretion and remodeling occur in the same individual cells. However, secretion is potentiated by cytochalasin E and C3 toxin, indicating that stress fiber formation antagonizes vWF secretion. In contrast, vWF secretion induced by cAMP-raising agents involves the release of only peripheral granules (implying less vWF release on a per cell basis) and is not inhibited by microtubule disruption. cAMP-mediated secretion is accompanied by disruption of stress fibers, strengthening of the cortical actin rim, and preservation of cell-cell contacts. It is unaffected by cytochalasins or C3 toxin. In contrast to [Ca(2+)](i)-raising agents, cAMP-raising agents induce secretion without cell retraction/intercellular gap formation. Thus, they are likely to play a physiological role in the regulation of endothelial vWF secretion and, therefore, of plasma vWF levels.  (+info)

Anaphylaxis and monoamine oxidase inhibitors--the use of adrenaline. (32/590)

A 67 year old woman taking a monoamine oxidase inhibitor (MAOI) presented to the accident and emergency department with an anaphylactic reaction to flucloxacillin. This case highlights the uncertainty regarding the use of adrenaline (epinephrine) in the context of concurrent MAOI use. A summary of the evidence is presented to clarify this.  (+info)