Synergism among ternary mixtures of fourteen sweeteners. (9/793)

The purpose of the present study was to determine the degree of synergism of sweet taste among ternary mixtures of 14 sweeteners. A trained panel evaluated ternary mixtures of 14 sweeteners varying in chemical structure and type. The ternary mixtures that were tested were limited to those in which the compounds comprising the mixture were synergistic in binary combinations, according to an earlier study. All sweeteners in the ternary mixtures were isointense with 2% sucrose, according to a previously developed formulae. Each self-mixture was also tested (e.g. 2% sucrose + 2% sucrose + 2% sucrose). The triad with the highest mean sweetness intensity rating was alitame-neohesperidin dihydrochalcone-rebaudioside-A (10.8). This represents an increase of 99.4% when compared with the average of the self-mixtures. While this is greater than the maximum of 74% increase found for binary mixtures, more dyadic combinations of sweeteners tested previously exhibited synergism than ternary combinations tested here. However, most ternary mixtures were synergistic (significantly greater than the average of the three self-mixtures) to some degree.  (+info)

Sweet taste transduction in hamster: role of protein kinases. (10/793)

Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4, 5-tris-phosphate (IP(3)) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K(+) conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from approximately 35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274-01 (NC-01, 200 microM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 microM). In all sweet-responsive taste buds tested (n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 microM) resulted in inhibition of the NC-01 response by approximately 75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 microM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca(2+)-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 microM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca(2+) that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.  (+info)

Characterization of acid-stable glucose isomerase from Streptomyces sp., and development of single-step processes for high-fructose corn sweetener (HFCS) production. (11/793)

The glucose isomerase from Streptomyces olivaceoviridis E-86 was purified by chromatographic procedures, showing one single protein band in the SDS-PAGE. The enzyme had high acid stability, and there was no loss in enzyme activity at pH 5.0 after incubation at 60 degrees C for 30 hr. The enzyme had sufficients activity at 60 degrees C, pH 5.5, (which is the reaction condition for a single-step process with a glucoamylase from A. niger), and at 58 degrees C, pH 6.0, (condition with a glucoamylase from R. niveus). By using this acid-stable glucose isomerase, a single-step process to produce high-fructose corn sweetener (HFCS) from liquefied starch was formed without any reductant or other reagents for enzyme stabilization. The HFCS produced was about fifty percent fructose and less than 1.5% unknown oligosaccharides.  (+info)

Blood glucose and insulin concentrations are reduced in humans administered sucrose with inosine or adenosine. (12/793)

Recently we found that some nucleosides such as inosine or adenosine inhibited alpha-glucosidase from rat intestine. The aim of this study was to determine whether these nucleosides are sucrase inhibitors in humans as well as rats. Blood glucose and insulin responses were examined in 23 healthy volunteers (18 males and 5 females) administered sucrose with inosine and 8 (males) administered sucrose with adenosine. The initial increase in plasma glucose and serum insulin concentrations at 30 min after loading sucrose (50 g) alone were significantly reduced by co-administration of inosine (2.5 and 1.0 g) or adenosine (2.5 g). The total increases in the areas under the plasma glucose and serum insulin concentration curves for 3 h after administration of the same amount of sucrose with inosine were also significantly less than those when the volunteers were administered sucrose alone. These results in humans agree with the findings obtained in our previous studies in rats. These nucleosides may be used as one of the components of artificial sweeteners when mixed with sucrose and may be useful as food additives to suppress increases in blood glucose and insulin.  (+info)

Bimolecular reaction simulation using Weighted Ensemble Brownian dynamics and the University of Houston Brownian Dynamics program. (13/793)

We discuss here the implementation of the Weighted Ensemble Brownian (WEB) dynamics algorithm of Huber and Kim in the University of Houston Brownian Dynamics (UHBD) suite of programs and its application to bimolecular association problems. WEB dynamics is a biased Brownian dynamics (BD) algorithm that is more efficient than the standard Northrup-Allison-McCammon (NAM) method in cases where reaction events are infrequent because of intervening free energy barriers. Test cases reported here include the Smoluchowski rate for association of spheres, the association of the enzyme copper-zinc superoxide dismutase with superoxide anion, and the binding of the superpotent sweetener N-(p-cyanophenyl)-N'-(diphenylmethyl)-guanidinium acetic acid to a monoclonal antibody fragment, NC6.8. Our results show that the WEB dynamics algorithm is a superior simulation method for enzyme-substrate reaction encounters with large free energy barriers.  (+info)

Simultaneous determination of sweeteners and preservatives in preserved fruits by micellar electrokinetic capillary chromatography. (14/793)

A micellar electrokinetic capillary method for the simultaneous determination of the sweeteners dulcin, aspartame, saccharin, and acesulfame-K and the preservatives sorbic acid; benzoic acid; sodium dehydroacetate; and methyl-, ethyl-, propyl-, isopropyl-, butyl-, and isobutyl-p-hydroxybenzoate in preserved fruits is developed. These additives are ion-paired and extracted using sonication followed by solid-phase extraction from the sample. Separation is achieved using a 57-cm fused-silica capillary with a buffer comprised of 0.05 M sodium deoxycholate, 0.02 M borate-phosphate buffer (pH 8.6), and 5% acetonitrile, and the wavelength for detection is 214 nm. The average recovery rate for all sweeteners and preservatives is approximately 90% with good reproducibility, and the detection limits range from 10 to 25 microg/g. Fifty preserved fruit samples are analyzed for the content of sweeteners and preservatives. The sweeteners found in 28 samples was aspartame (0.17-11.59 g/kg) or saccharin (0.09-5.64 g/kg). Benzoic acid (0.02-1.72 g/kg) and sorbic acid (0.27-1.15 g/kg) were found as preservatives in 29 samples.  (+info)

Paralytic ileus accompanied by pneumatosis cystoides intestinalis after acarbose treatment in an elderly diabetic patient with a history of heavy intake of maltitol. (15/793)

An 87-year-old woman, diagnosed with diabetes mellitus at age 73, exhibited abdominal distention and appetite loss in March 1998. She had received acarbose as well as 5 mg per day of glibenclamide and had habitually used about 100 g of maltitol daily from 1997. She was diagnosed as having paralytic ileus accompanied by pneumatosis cystoides intestinalis (PCI). This condition subsided quickly with discontinuation of diet or cessation of acarbose and maltitol usage. The patient's condition appears to be attributable to increased gas levels produced by fermentation of disaccharides and maltitol. Decreased intestinal motility may be a result of pre-existing diabetic autonomic neuropathy and hypothyroidism. The patient's clinical course suggests that paralytic ileus and PCI should be listed as rare side effects of alpha-glucosidase inhibitors and that the drug should be used with great caution for those who consume non-digestive sugar substitutes.  (+info)

On the sweetness of N-(trifluoroacetyl)aspartame. (16/793)

A panel of tasters has found that the N-trifluoroacetyl derivative of aspartame is five times less sweet than the parent compound, contrary to the tenet in the literature, but consistent with sweet receptor models which require this nitrogen to exist in protonated form.  (+info)