Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. (65/304)

Antimicrobial peptides are an integral part of the epithelial innate defense system. Dermcidin (DCD) is a recently discovered antimicrobial peptide with a broad spectrum of activity. It is constitutively expressed in human eccrine sweat glands and secreted into sweat. Patients with atopic dermatitis (AD) have recurrent bacterial or viral skin infections and pronounced colonization with Staphylococcus aureus. We hypothesized that patients with AD have a reduced amount of DCD peptides in sweat contributing to the compromised constitutive innate skin defense. Therefore, we performed semiquantitative and quantitative analyses of DCD peptides in sweat of AD patients and healthy subjects using surface-enhanced laser desorption ionization time-of-flight mass spectrometry and ELISA. The data indicate that the amount of several DCD-derived peptides in sweat of patients with AD is significantly reduced. Furthermore, compared with atopic patients without previous infectious complications, AD patients with a history of bacterial and viral skin infections were found to have significantly less DCD-1 and DCD-1L in their sweat. To analyze whether the reduced amount of DCD in sweat of AD patients correlates with a decreased innate defense, we determined the antimicrobial activity of sweat in vivo. We showed that in healthy subjects, sweating leads to a reduction of viable bacteria on the skin surface, but this does not occur in patients with AD. These data indicate that reduced expression of DCD in sweat of patients with AD may contribute to the high susceptibility of these patients to skin infections and altered skin colonization.  (+info)

The pathogenesis of climacteric syndrome and principle of acupuncture treatment based on TCM theory about brain. (66/304)

The brain is the sea of marrow, stores the cerebral spirit and dominates all the life activities of the human body, which are the basic TCM knowledge about the brain. Based on this knowledge, the pathogenesis of climacteric syndrome is considered as consumption and deficiency of kidney-essence, and incoordination between the brain and kidney. The principle of acupuncture treatment should be soothing the mind and tonifying the kidney.  (+info)

Disposition of cocaine and its metabolites in human sweat after controlled cocaine administration. (67/304)

BACKGROUND: Sweat testing is a noninvasive technique for monitoring drug exposure in treatment, criminal justice, and employment settings. METHODS: We evaluated cocaine excretion in 9 participants' sweat after they received 3 low doses (75 mg/70 kg) of cocaine HCl subcutaneously within 1 week and, 3 weeks later, 3 high doses (150 mg/70 kg). Six additional participants completed portions of the study. PharmChek sweat patches (n = 1390) were collected throughout a 3-week washout period, reflecting previously self-administered drugs, and during and after controlled dosing. RESULTS: Cocaine was the primary analyte detected with 24% of patches positive at the gas chromatography-mass spectrometry limit of quantification of 2.5 ng/patch and 7% of patches at the proposed Substance Abuse and Mental Health Services Administration cutoff of 25 ng/patch. Ecgonine methyl ester (EME) was detected more often and at generally higher concentrations than benzoylecgonine. In patches containing both metabolites, there was no statistically significant difference in the benzoylecgonine/EME ratio based on length of patch wear. During washout, 2 participants' weekly patches tested positive (> or =25 ng/patch) during the first week; one remained positive during week 2; and none were positive during week 3. Cocaine and EME were detectable within 2 h; benzoylecgonine was not detected until 4-8 h after low doses and slightly sooner after high doses. The majority of drug was excreted within 24 h. Over 70% of weekly patches worn during low doses were positive for cocaine (> or =25 ng/patch), increasing to 100% during high doses. CONCLUSION: Sweat testing is an effective and reliable method of monitoring cocaine exposure.  (+info)

Effects of short-term exercise in the heat on thermoregulation, blood parameters, sweat secretion and sweat composition of tropic-dwelling subjects. (68/304)

This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  (+info)

Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. (69/304)

The protein pattern of healthy human eccrine sweat was investigated and 10 major proteins were detected from which apolipoprotein D, lipophilin B, and cathepsin D (CatD) were identified for the first time in human eccrine sweat. We focused our studies on the function of the aspartate protease CatD in sweat. In vitro digestion experiments using a specific fluorescent CatD substrate showed that CatD is enzymatically active in human sweat. To identify potential substrates of CatD in human eccrine sweat LL-37 and DCD-1L, two antimicrobial peptides present in sweat, were digested in vitro with purified CatD. LL-37 was not significantly digested by CatD, whereas DCD-1L was cleaved between Leu(44) and Asp(45) and between Leu(29) and Glu(30) almost completely. The DCD-1L-derived peptides generated in vitro by CatD were also found in vivo in human sweat as determined by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Furthermore, besides the CatD-processed peptides we identified additionally DCD-1L-derived peptides that are generated upon cleavage with a 1,10-phenanthroline-sensitive carboxypeptidase and an endoprotease. Taken together, proteolytic processing generates 12 DCD-1L-derived peptides. To elucidate the functional significance of postsecretory processing the antimicrobial activity of three CatD-processed DCD-1L peptides was tested. Whereas two of these peptides showed no activity against Gram-positive and Gram-negative bacteria, one DCD-1L-derived peptide showed an even higher activity against Escherichia coli than DCD-1L. Functional analysis indicated that proteolytic processing of DCD-1L by CatD in human sweat modulates the innate immune defense of human skin.  (+info)

Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. (70/304)

Antimicrobial peptides (AMPs) are effector molecules of innate immunity. Dermcidin (DCD), a recently discovered AMP with broad-spectrum activity, is produced constitutively by the eccrine sweat glands and secreted into sweat. In this study, we investigated the proteolytic processing, site-specific expression, and stability of DCD peptides in eccrine sweat. Using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and reversed-phase high-pressure liquid chromatography analysis, we identified in eccrine sweat 14 proteolytically processed DCD peptides. Semiquantitative SELDI-TOF-MS analysis indicated that processing of DCD-1L is individually different, but generates a few dominant peptides. At body sites with a high probability for contact with pathogenic microorganisms, a high amount of antimicrobial active DCD peptides was detected in sweat. Furthermore, we show that the secretion rate of DCD is constant during a period of prolonged sweating and that DCD peptides are stable in sweat over several hours. Other known AMPs like the human cathelicidin LL-37 and alpha- or beta-defensins were not detected in significant quantity in eccrine sweat. Owing to the durable and abundant presence, DCD-derived peptides contribute to the first line of defense by building a constant barrier that overlies the epithelial skin.  (+info)

Cystic fibrosis: terminology and diagnostic algorithms. (71/304)

There is great heterogeneity in the clinical manifestations of cystic fibrosis (CF). Some patients may have all the classical manifestations of CF from infancy and have a relatively poor prognosis, while others have much milder or even atypical disease manifestations and still carry mutations on each of the CFTR genes. It is important to distinguish between these categories of patients. The European Diagnostic Working Group proposes the following terminology. Patients are diagnosed with classic or typical CF if they have one or more phenotypic characteristics and a sweat chloride concentration of >60 mmol/l. The vast majority of CF patients fall into this category. Usually one established mutation causing CF can be identified on each CFTR gene. Patients with classic CF can have exocrine pancreatic insufficiency or pancreatic sufficiency. The disease can have a severe course with rapid progression of symptoms or a milder course with very little deterioration over time. Patients with non-classic or atypical CF have a CF phenotype in at least one organ system and a normal (<30 mmol/l) or borderline (30-60 mmol/l) sweat chloride level. In these patients confirmation of the diagnosis of CF requires detection of one disease causing mutation on each CFTR gene or direct quantification of CFTR dysfunction by nasal potential difference measurement. Non-classic CF includes patients with multiorgan or single organ involvement. Most of these patients have exocrine pancreatic sufficiency and milder lung disease. Algorithms for a structured diagnostic process are proposed.  (+info)

Exercise associated hyponatraemia: quantitative analysis to understand the aetiology. (72/304)

BACKGROUND: The development of symptomatic hyponatraemia consequent on participation in marathon and ultraendurance races has led to questions about its aetiology and prevention. OBJECTIVES: To evaluate: (a) the assertion that sweat sodium losses cannot contribute to the development of hyponatraemia during endurance exercise; (b) the adequacy of fluid replacement recommendations issued by the International Marathon Medical Directors Association (IMMDA) for races of 42 km or longer; (c) the effectiveness of commercial sports drinks, compared with water, for attenuating plasma sodium reductions. METHODS: A mathematical model was used to predict the effects of different drinking behaviours on hydration status and plasma sodium concentration when body mass, body composition, running speed, weather conditions, and sweat sodium concentration were systematically varied. RESULTS: Fluid intake at rates that exceed sweating rate is predicted to be the primary cause of hyponatraemia. However, the model predicts that runners secreting relatively salty sweat can finish ultraendurance exercise both dehydrated and hyponatraemic. Electrolyte-containing beverages are predicted to delay the development of hyponatraemia. The predictions suggest that the IMMDA fluid intake recommendations adequately sustain hydration over the 42 km distance if qualifiers-for example, running pace, body size-are followed. CONCLUSIONS: Actions to prevent hyponatraemia should focus on minimising overdrinking relative to sweating rate and attenuating salt depletion in those who excrete salty sweat. This simulation demonstrates the complexity of defining fluid and electrolyte consumption rates during athletic competition.  (+info)