Chemical characterization of milk oligosaccharides of the polar bear, Ursus maritimus. (1/29)

Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(alpha1-3)Gal(beta1-4)Glc (alpha3'-galactosyllactose), Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose), Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (B-tetrasaccharide), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (A-tetrasaccharide), Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)[Gal(alpha1-3)Gal(beta1-4)Glc NAc(beta1-6)]Gal(beta1-4)Glc; the saccharides from another animal: alpha3'-galactosyllactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, A-tetrasaccharide, GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)[Fuc(alpha1-3)]Glc (A-pentasaccharide), Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[F uc(alpha1-3)]Glc (difucosylheptasaccharide) and Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3) inverted question markGal(alpha1-3) Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6) inverted question markGal(beta1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had alpha-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  (+info)

Isotopes, ice ages, and terminal Proterozoic earth history. (2/29)

Detailed correlations of ancient glacial deposits, based on temporal records of carbon and strontium isotopes in seawater, indicate four (and perhaps five) discrete ice ages in the terminal Proterozoic Eon. The close and repeated stratigraphic relationship between C-isotopic excursions and glaciogenic rocks suggests that unusually high rates of organic carbon burial facilitated glaciation by reducing atmospheric greenhouse capacity. The emerging framework of time and environmental change contributes to the improved resolution of stratigraphic and evolutionary pattern in the early fossil record of animals.  (+info)

Recent levels of technetium-99 in seawater at the west coast of Svalbard. (3/29)

Seawater from the western coast of Svalbard was sampled in the spring and summer of 2000 to determine levels of technetium-99 (99Tc), a conservative-behaving, manmade radionuclide originating from European nuclear reprocessing plants. This paper deals with the recent levels of this radionuclide in seawater and with the link between an Arctic fjord, Kongsfjorden, and the Western Spitsbergen Current (WSC), investigated using 99Tc results. By means of the WSC, the 99Tc radionuclides ultimately reach the eastern Fram Strait west of Spitsbergen (the largest island of the Svalbard archipelago). Results from oceanographic modelling and sea ice observations indicate a direct coupling between Kongsfjorden and the area west of it. The findings in connection with new radionuclide results presented in this paper concur with these assumptions. Furthermore they indicate that the inner part of Kongsfjorden is also well linked to the WSC. Surface seawater from the central part of the WSC, sampled during a cruise with RV Polarstern in the summer of 2000, shows a higher level of 99Tc than those measured in Kongsfjorden in spring 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC area provide information pertaining to the lateral distribution of 99Tc. The results, along with additional data from spring 2001, indicate that Kongsfjorden is suitable for monitoring the levels of 99Tc arriving in the European Arctic and that the sheltered setting of this fjord does not necessarily provide protection against pollution from the open sea.  (+info)

Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. (4/29)

Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, succinate, fumarate, proline, alanine and glycine were used as electron donors in the presence of sulfate. Growth occurred with pyruvate as sole substrate. Optimal growth was observed at pH 7.1-7.5 and concentrations of 1-1.5 % NaCl and 0.4 % MgCl2. Strain 15T grew between 26 and 46.5 degrees C and optimal growth occurred at 44 degrees C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48.9 mol%. Strain 15T was most closely related to Desulfotomaculum thermosapovorans MLF(T) (93.5 % 16S rRNA gene sequence similarity). Strain 15T represents a novel species, for which the name Desulfotomaculum arcticum sp. nov. is proposed. The type strain is strain 15T (=DSM 17038T = JCM 12923T).  (+info)

Spatial distribution of Echinococcus multilocularis, Svalbard, Norway. (5/29)


Remispora spitsbergenensis sp. nov., a marine lignicolous ascomycete from Svalbard, Norway. (6/29)

Abstract: Remispora was established for R. maritima, a fungus with globose/subglobose, lightly colored and coriaceous ascomata; deliquescing asci; ellipsoidal ascospores; and bipolar, pleomorphic ascospore appendages. Seven species currently are included in Remispora: R crispa, R. galerita, R maritima, R. minuta, R. pilleata, R. quadriremis and R stellata. Variations on ascospore appendages can be observed in Remispora. In general the appendage is exosporic in nature and comprises an amorphous, electron-transparent matrix, and a fibrous, electron-dense component. An eighth Remispora species, R. spitsbergenensis sp. nov., is described here, discovered from washed-up wood collected at the shore of Longyearbyen, Svalbard, Norway. Ascospore appendages of R. spitsbergenensis appear as fibrous strands and amorphic material under the scanning electron microscope, which are characteristic of a Remispora species. Remispora spitsbergenensis resembles R. quadriremis and R. stellata because all possess four or more ascospore appendages at one end. Remispora spitsbergenensis possesses consistently four polar appendages at each end in contrast to six in R. stellata. Also ascospore appendages of R. spitsbergenensis are ribbon-like, compared with the obclavate, curved and attenuate appendages in R. quadriremis and R. stellata. A key for the identification of the eight Remispora species is provided.  (+info)

Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. (7/29)


Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. (8/29)