Specific molecular recognition of mixed nucleic acid sequences: an aromatic dication that binds in the DNA minor groove as a dimer. (73/3140)

Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.  (+info)

Functional properties of complement factor H-related proteins FHR-3 and FHR-4: binding to the C3d region of C3b and differential regulation by heparin. (74/3140)

The human factor H-related proteins FHR-3 and FHR4 are members of a family of proteins related to the complement factor H. Here, we report that the two proteins bind to the C3d region of complement C3b. The apparent K(A) values for the interactions of FHR-3 and FHR-4 with C3b are 7.5 x 10(6) M(-1) and 2.9 x 10(6) M(-1), respectively. Binding studies performed with C3b-coated pneumococci confirmed the results obtained with the biosensor system. A C-terminal construct of factor H showed similar binding characteristics. The interaction of FHR-3, but not of FHR4, with opsonised pneumococci was inhibited by heparin.  (+info)

Binding of Bacillus thuringiensis Cry1Ac toxin to Manduca sexta aminopeptidase-N receptor is not directly related to toxicity. (75/3140)

Bacillus thuringiensis Cry1Ac delta-endotoxin specifically binds a 115-kDa aminopeptidase-N purified from Manduca sexta midgut. Cry1Ac domain III mutations were constructed around a putative sugar-binding pocket and binding to purified aminopeptidase-N and brush border membrane vesicles (BBMV) was compared to toxicity. Q509A, R511A, Y513A, and 509-511 (QNR-AAA) eliminated aminopeptidase-N binding and reduced binding to BBMV. However, toxicity decreased no more than two-fold, indicating activity is not directly correlated with aminopeptidase-N binding. Analysis of toxin binding to aminopeptidase-N in M. sexta is therefore insufficient for predicting toxicity. Mutants retained binding, however, to another BBMV site, suggesting alternative receptors may compensate in vivo.  (+info)

Calumenin interacts with serum amyloid P component. (76/3140)

We recently reported the identification of human calumenin, a novel Ca(2+) binding, transformation-sensitive and secreted protein [Vorum et al. (1998) Biochim. Biophys. Acta 1386, 121-131; Vorum et al. (1999) Exp. Cell Res. 248, 473-481] belonging to the family of multiple EF-hand proteins of the secretory pathway that include reticulocalbin, ERC-55, Cab45 and crocalbin. In order to further investigate the extracellular functions of calumenin we immobilized the recombinant protein to a column. After application of a placental tissue extract we were able to elute one protein that interacts with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues.  (+info)

Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. (77/3140)

In this study, we report the isolation and characterization of three novel hemolymph proteins that are believed to be involved in the innate immune response of horseshoe crabs, Tachypleus tridentatus. They include two closely related proteins, one that binds to the protein A of Staphylococcus aureus (PAP) and another that binds to the lipopolysaccharide of Escherichia coli (LBP). PAP binds specifically to staphylococcal protein A (SpA) with a K(D) of 3.86 x 10(-5) M, whereas LBP binds to lipopolysaccharide (LPS) with a K(D) of 1.03 x 10(-6) M. Both PAP and LBP are glycoproteins with an apparent molecular mass of about 40 kDa. N-terminal sequences of PAP and LBP showed 61.9 and 72.2% identity, respectively, to tachylectin-3, a lectin isolated from the amebocyte of T. tridentatus, previously characterized by its affinity to the O-antigen of LPS and blood group A antigen (Muta, T., and Iwanaga, S. (1996) Curr. Opin. Immunol. 8, 41-47). The third protein, a galactose-binding protein (GBP), was found to bind tightly to Sepharose CL-4B and could only be eluted from the column matrix with chaotropic agents, such as 4 M urea or 2 M guanidine hydrochloride. Further analysis indicated that GBP binds to D(+)-galactose with a K(D) of 2.47 x 10(-7) M. N-terminal sequence analysis showed that GBP shared a 50% identity with lectin L-6, identified in the granules of amebocyte of T. tridentatus. (Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., Mizunoe, Y., Wai, S. N. , Iwanaga, S., and Kawabata, S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10086-10091). Lectin-L6 and tachylectin-3 are nonglycosylated intracellular proteins with about half the molecular mass of PAP, LBP, and GBP. GBP also binds to PAP and LBP with K(D) values of 1.25 x 10(-7) and 1.43 x 10(-8) M, respectively, and this binding is enhanced about 10-fold upon the addition of SpA and LPS to form the GBP.PAP.SpA and GBP.LBP.LPS complexes, respectively.  (+info)

Protein-disulfide isomerase (PDI) in FRTL5 cells. pH-dependent thyroglobulin/PDI interactions determine a novel PDI function in the post-endoplasmic reticulum of thyrocytes. (78/3140)

Thyroglobulin (TG) is secreted by the thyrocytes into the follicular lumen of the thyroid. After maturation and hormone formation, TG is endocytosed and delivered to lysosomes. Quality control mechanisms may occur during this bidirectional traffic since 1) several molecular chaperones are cosecreted with TG in vivo, and 2) lysosomal targeting of immature TG is thought to be prevented via the interaction, in acidic conditions, between the Ser(789)-Met(1172) TG hormonogenic domain (BD) and an unidentified membrane receptor. We investigated the secretion and cell surface expression of PDI and other chaperones in the FRTL5 thyroid cell line, and then studied the characteristics of the interaction between TG and PDI. We demonstrated that PDI, but also other chaperones such as calnexin and KDEL-containing proteins are exposed at the cell surface. We observed on living cells or membrane preparations that PDI specifically binds TG in acidic conditions, and that only BD is involved in binding. Surface plasmon resonance analysis of TG/PDI interactions indicated: 1) that PDI bound TG but only in acidic conditions, and that it preferentially recognized immature molecules, and 2) BD is involved in binding even if cysteine-rich modules are deleted. The notion that PDI acts as an "escort" for immature TG in acidic post-endoplasmic reticulum compartments is discussed.  (+info)

Quantitative assessment of complex formation of nuclear-receptor accessory proteins. (79/3140)

Like other nuclear receptors, steroid hormone receptors form large protein hetero-complexes in their inactive, ligand-friendly state. Several heat-shock proteins, immunophilins and others have been identified as members of these highly dynamic complexes. The interaction kinetics and dynamics of hsp90, hsp70, p60 (Hop), FKBP52, FKBP51, p48 (Hip) and p23 have been assessed by a biosensor approach measuring the complex formation in real time. A core chaperone complex has been reconstituted from p60, hsp90 and hsp70. p60 forms a molecular bridge between hsp90 and hsp70 with an affinity in the range of 10(5) M(-1). Dynamics of hsp90-p60 complex formation is modulated by ATP through changes in the co-operativity of interaction. At low protein concentrations ATP stabilizes the complex. Binding of p23 to hsp90 did not change the affinity of the hsp90-p60 complex and the stabilizing effect of ATP. Saturation of the p48-hsp70 interaction could not be achieved, suggesting multiple binding sites. A picture of the protein complex, including stoichiometric coefficients, co-operativity of interaction and equilibrium-binding constants, has been formed.  (+info)

Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. (80/3140)

It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH(2) and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention.  (+info)