Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat. (1/426)

The soleus (S), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles of the cat are interlinked by rapid spinal reflex pathways. In the decerebrate state, these heterogenic reflexes are either excitatory and length dependent or inhibitory and force dependent. Mechanographic analysis was used to obtain additional evidence that the muscle spindle primary ending and the Golgi tendon organ provide the major contributions to these reflexes, respectively. The tendons of the triceps surae muscles were separated and connected to independent force transducers and servo-controlled torque motors in unanesthetized, decerebrate cats. The muscles were activated as a group using crossed-extension reflexes. Electrical stimulation of the caudal cutaneous sural nerve was used to provide a particularly strong activation of MG and decouple the forces of the triceps surae muscles. During either form of activation, the muscles were stretched either individually or in various combinations to determine the strength and characteristics of autogenic and heterogenic feedback. The corresponding force responses, including both active and passive components, were measured during the changing background tension. During activation of the entire group, the excitatory, heterogenic feedback linking the three muscles was found to be strongest onto LG and weakest onto MG, in agreement with previous results concerning the strengths of heteronymous Ia excitatory postsynaptic potentials among the triceps surae muscles. The inhibition, which is known to affect only the soleus muscle, was dependent on active contractile force and was detected essentially as rapidly as length dependent excitation. The inhibition outlasted the excitation and was blocked by intravenous strychnine. These results indicate that the excitatory and inhibitory effects are dominated by feedback from primary spindle receptors and Golgi tendon organs. The interactions between these two feedback pathways potentially can influence both the mechanical coupling between ankle and knee.  (+info)

The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. (2/426)

We observed a missense mutation in the peripheral myelin protein zero gene (MPZ, Thr124Met) in seven Charcot-Marie-Tooth (CMT) families and in two isolated CMT patients of Belgian ancestry. Allele-sharing analysis of markers flanking the MPZ gene indicated that all patients with the Thr124Met mutation have one common ancestor. The mutation is associated with a clinically distinct phenotype characterized by late onset, marked sensory abnormalities and, in some families, deafness and pupillary abnormalities. Nerve conduction velocities of the motor median nerve vary from <38 m/s to normal values in these patients. Clusters of remyelinating axons in a sural nerve biopsy demonstrate an axonal involvement, with axonal regeneration. Phenotype-genotype correlations in 30 patients with the Thr124Met MPZ mutation indicate that, based on nerve conduction velocity criteria, these patients are difficult to classify as CMT1 or CMT2. We therefore conclude that CMT patients with slightly reduced or nearly normal nerve conduction velocity should be screened for MPZ mutations, particularly when additional clinical features such as marked sensory disturbances, pupillary abnormalities or deafness are also present.  (+info)

Clinicopathological features of Churg-Strauss syndrome-associated neuropathy. (3/426)

We assessed the clinicopathological features of 28 patients with peripheral neuropathy associated with Churg-Strauss syndrome. Initial symptoms attributable to neuropathy were acute painful dysaesthesiae and oedema in the dysaesthetic portion of the distal limbs. Sensory and motor involvement mostly showed a pattern of mononeuritis multiplex in the initial phase, progressing into asymmetrical polyneuropathy, restricted to the limbs. Parallel loss of myelinated and unmyelinated fibres due to axonal degeneration was evident as decreased or absent amplitudes of sensory nerve action potentials and compound muscle action potentials, indicating acute massive axonal loss. Epineurial necrotizing vasculitis was seen in 54% of cases; infiltrates consisted mainly of CD8-positive suppressor/cytotoxic and CD4-positive helper T lymphocytes. Eosinophils were present in infiltrates, but in smaller numbers than lymphocytes. CD20-positive B lymphocytes were seen only occasionally. Deposits of IgG, C3d, IgE and major basic protein were scarce. The mean follow-up period was 4.2 years, with a range of 8 months to 10 years. Fatal outcome was seen only in a single patient, indicating a good survival rate. The patients who responded well to the initial corticosteroid therapy within 4 weeks regained self-controlled functional status in longterm follow-up (modified Rankin score was < or = 2), while those not responding well to the initial corticosteroid therapy led a dependent existence (P < 0.01). In addition the patients with poor functional outcomes had significantly more systemic organ damage caused by vasculitis (P < 0.05). Necrotizing vasculitis mediated by cytotoxic T cells, leading to ischaemic changes, appears to be a major cause of Churg-Strauss syndrome-associated neuropathy. The initial clinical course and the extent of systemic vasculitic lesions may influence the long-term functional prognosis.  (+info)

Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. (4/426)

Aberrant neurofilament phosphorylation occurs in many neurodegenerative diseases, and in this study, two animal models of type 1 diabetes--the spontaneously diabetic BB rat and the streptozocin-induced diabetic rat--have been used to determine whether such a phenomenon is involved in the etiology of the symmetrical sensory polyneuropathy commonly associated with diabetes. There was a two- to threefold (P < 0.05) elevation of neurofilament phosphorylation in lumbar dorsal root ganglia (DRG) of diabetic rats that was localized to perikarya of medium to large neurons using immunocytochemistry. Additionally, diabetes enhanced neurofilament M phosphorylation by 2.5-fold (P < 0.001) in sural nerve of BB rats. Neurofilaments are substrates of the mitogen-activated protein kinase (MAPK) family, which includes c-jun NH2-terminal kinase (JNK) or stress-activated protein kinase (SAPK1) and extracellular signal-regulated kinases (ERKs) 1 and 2. Diabetes induced a significant three- to fourfold (P < 0.05) increase in phosphorylation of a 54-kDa isoform of JNK in DRG and sural nerve, and this correlated with elevated c-Jun and neurofilament phosphorylation. In diabetes, ERK phosphorylation was also increased in the DRG, but not in sural nerve. Immunocytochemistry showed that JNK was present in sensory neuron perikarya and axons. Motoneuron perikarya and peroneal nerve of diabetic rats showed no evidence of increased neurofilament phosphorylation and failed to exhibit phosphorylation of JNK. It is hypothesized that in sensory neurons of diabetic rats, aberrant phosphorylation of neurofilament may contribute to the distal sensory axonopathy observed in diabetes.  (+info)

Abetalipoproteinaemia. A case report with pathological studies. (5/426)

The clinical and pathological features of a case of abetalipoproteinaemia in a 38-year-old patient are described in detail. A feature not previously recorded was a marked reduction in the velocity of ocular horizontal saccadic movements. Pathological studies revealed an active chronic demyelinating process. The patient showed no response to large doses of vitamin E. The rationale for this therapy, and the possible reasons for its failure are discussed.  (+info)

Vasculitic polyradiculopathy in systemic lupus erythematosus. (6/426)

A 22 year old woman with recently diagnosed systemic lupus erythematosus presented with subacute progressive areflexic paraparesis, electrophysiologically identified as a pure axonal polyradiculopathy. Sural nerve biopsy disclosed necrotising vasculitis. A striking radiological feature was marked enhancement of the cauda equina with gadolinium.  (+info)

Axonal and perikaryal involvement in chronic inflammatory demyelinating polyneuropathy. (7/426)

OBJECTIVES: To assess the extent of loss of myelinated nerve fibres and spinal motor neuron loss in chronic inflammatory demyelinating polyneuropathy (CIDP), a clinicopathological study was conducted on biopsied sural nerves and necropsied spinal cords from patients with CIDP. METHODS: The myelinated fibre pathology of 71 biopsied sural nerves and motor neuron pathology of nine necropsied spinal cords at L4 levels in patients with CIDP were quantitatively and immunohistochemically assessed. RESULTS: Myelinated nerve fibre density was significantly diminished to 65.4% of the control values (p <0.0001), correlating inversely with the extent of segmental demyelination and remyelination (r = -0.43, p < 0.0005) and duration of illness (r = -0.31, p < 0.01). Numbers of large spinal motor neurons in CIDP were variably but significantly diminished (range from 46.0 to 97.6% of the age matched control value (p < 0.005)), and reactive astrogliosis was evident in the ventral horn in CIDP. The frequency of ventral horn neurons exhibiting central chromatolysis and the accumulation of phosphorylated high molecular weight neurofilament protein was significantly higher in CIDP than in controls (p<0.01 and p<0.05). CONCLUSIONS: The loss of nerve axons and spinal motor neurons is common in CIDP, and extensive in some cases. These neuronal and axonal losses may influence the functional prognosis in CIDP.  (+info)

Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene. (8/426)

A French family had Charcot-Marie-Tooth disease type 2 (CMT2) which was characterised by late onset of peripheral neuropathy involvement, Argyll Robertson-like pupils, dysphagia, and deafness. Electrophysiological studies and nerve biopsy defined the neuropathy as axonal type. Genetic analysis of myelin protein zero (MPZ) found a mutation in codon 124 resulting in substitution of threonine by methionine. One of the patients, presently 30 years old, showed only Argyll Robertson-like pupils as an objective sign but no clinical or electrophysiological signs of peripheral neuropathy.  (+info)