Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. (1/467)

A universal molybdenum-containing cofactor (MoCo) is essential for the activity of all human molybdoenzymes, including sulphite oxidase. The free cofactor is highly unstable, and all organisms share a similar biosynthetic pathway. The involved enzymes exhibit homologies, even between bacteria and humans. We have exploited these homologies to isolate a cDNA for the heterodimeric molybdopterin (MPT)-synthase. This enzyme is necessary for the conversion of an unstable precursor into molybdopterin, the organic moiety of MoCo. The corresponding transcript shows a bicistronic structure, encoding the small and large subunits of the MPT-synthase in two different open reading frames (ORFs) that overlap by 77 nucleotides. In various human tissues, only one size of mRNA coinciding with the bicistronic transcript was detected. In vitro translation and mutagenesis experiments demonstrated that each ORF is translated independently, leading to the synthesis of a 10-kDa protein and a 21-kDa protein for the small and large subunits, respectively, and indicated that the 3'-proximal ORF of the bicistronic transcript is translated by leaky scanning.  (+info)

Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. (2/467)

Biosynthesis of the molybdenum cofactor (MoCo) can be divided into (1) the formation of a precursor and (2) the latter's subsequent conversion, by molybdopterin synthase, into the organic moiety of MoCo. These two steps are reflected by the complementation groups A and B and the two formally distinguished types of MoCo deficiency that have an identical phenotype. Both types of MoCo deficiency result in a pleiotropic loss of all molybdoenzyme activities and cause severe neurological damage. MOCS1 is defective in patients with group A deficiency and has been shown to encode two enzymes for early synthesis via a bicistronic transcript with two consecutive open reading frames (ORFs). MOCS2 encodes the small and large subunits of molybdopterin synthase via a single transcript with two overlapping reading frames. This gene was mapped to 5q and comprises seven exons. The coding sequence and all splice site-junction sequences were screened for mutations, in MoCo-deficient patients in whom a previous search for MOCS1 mutations had been negative. In seven of the eight patients whom we investigated, we identified MOCS2 mutations that, by their nature, are most likely responsible for the deficiency. Three different frameshift mutations were observed, with one of them found on 7 of 14 identified alleles. Furthermore, a start-codon mutation and a missense mutation of a highly conserved amino acid residue were found. The locations of the mutations confirm the functional role of both ORFs. One of the patients with identified MOCS2 mutations had been classified as type B, in complementation studies. These findings support the hypothetical mechanism, for both forms of MoCo deficiency, that formerly had been established by cell-culture experiments.  (+info)

Purification and characterization of N-hydroxy-2-acetylaminofluorene sulfotransferase from rat liver. (3/467)

N-Hydroxy-2-acetylaminofluorene (N-OH-2-AAF) sulfotransferase is an enzyme that catalyzes the sulfate transfer from the active sulfate, 3'-phosphoadenosine 5'-phosphosulfate (PAPS), to N-OH-2-AAF to form a highly reactive product acetylaminofluorene N-sulfate. It has been purified about 2000-fold with a yield of over 12% from adult Sprague-Dawley male rat livers by an eight-step procedure. The final preparation was homogeneous on analytrical disc gel electrophoresis. The purified enzyme had activity toward p-nitrophenol with an approximately 1600-fold increase in specific activity over the crude homogenate, but it had almost no detectable activity toward steroids such as estrone, beta-estradiol, testosterone, dehydroisoandrosterone, and corticosterone. There was also very little sulfation activity toward serotonin and L-tyrosine methyl ester. The optimal pH for the enzyme activity is approximately 6.3 when measured in sodium phosphate buffer. Mg2+ at 6 to 9 mM could increase the enzyme activity up to 30%. Mn2+ activated the enzyme only slightly at very low concentrations. Zn2+, Co2+, Cu2+, and Ni2+ were all strongly inhibitory, but Ca2+ had very little effect. Thiol compounds were found to have a stabilizing effect and thiol-blocking reagents were potent inhibitors for this enzyme. The pure enzyme was very unstable especially in diluet solutions. The isoelectric point (pl) of the enzyme is 5.66 +/- 0.07. The molecular weight of the native enzyme was 68,000 +/- 500 as estimated by Sephadex G-100 and G-200 gel filtrations. A single component with molecular weight of 38,250 +/- 1,350 was observed on sodium dodecyl sulfate gel electrophoresis in the absence and presence of 2-mercaptoethanol. Comparison of the enzyme activity in mail and female rat livers at each stage of purification revealed that there was only a trace amount of N-OH-2-AAF sulfotransferase present in the female rat liver.  (+info)

Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. (4/467)

We describe the primary structure of eukaryotic molybdopterin synthase small and large subunits and compare the sequences of the lower eukaryote, Aspergillus nidulans, and a higher eukaryote, Homo sapiens. Mutants in the A. nidulans cnxG (encoding small subunit) and cnxH (large subunit) genes have been analyzed at the biochemical and molecular level. Chlorate-sensitive mutants, all the result of amino acid substitutions, were shown to produce low levels of molybdopterin, and growth tests suggest that they have low levels of molybdoenzymes. In contrast, chlorate-resistant cnx strains have undetectable levels of molybdopterin, lack the ability to utilize nitrate or hypoxanthine as sole nitrogen sources, and are probably null mutations. Thus on the basis of chlorate toxicity, it is possible to distinguish between amino acid substitutions that permit a low level of molybdopterin production and those mutations that completely abolish molybdopterin synthesis, most likely reflecting molybdopterin synthase activity per se. Residues have been identified that are essential for function including the C-terminal Gly of the small subunit (CnxG), which is thought to be crucial for the sulfur transfer process during the formation of molybdopterin. Two independent alterations at residue Gly-148 in the large subunit, CnxH, result in temperature sensitivity suggesting that this residue resides in a region important for correct folding of the fungal protein. Many years ago it was proposed, from data showing that temperature-sensitive cnxH mutants had thermolabile nitrate reductase, that CnxH is an integral part of the molybdoenzyme nitrate reductase (MacDonald, D. W., and Cove, D. J. (1974) Eur. J. Biochem. 47, 107-110). Studies of temperature-sensitive cnxH mutants isolated in the course of this study do not support this hypothesis. Homologues of both molybdopterin synthase subunits are evident in diverse eukaryotic sources such as worm, rat, mouse, rice, and fruit fly as well as humans as discussed in this article. In contrast, molybdopterin synthase homologues are absent in the yeast Saccharomyces cerevisiae. Precursor Z and molybdopterin are undetectable in this organism nor do there appear to be homologues of molybdoenzymes.  (+info)

The lipoate synthase from Escherichia coli is an iron-sulfur protein. (5/467)

Lipoate synthase catalyzes the last step of the biosynthesis of lipoic acid in microorganisms and plants. The protein isolated from an overexpressing Escherichia coli strain was purified from inclusion bodies. Spectroscopic (UV-visible and electron paramagnetic resonance) properties of the reconstituted protein demonstrate the presence of a (2Fe-2S) center per protein. As observed in biotin synthase, these clusters are converted to (4Fe-4S) centers during reduction under anaerobic conditions. The possible involvement of the cluster in the insertion of sulfur atoms into the octanoic acid backbone is discussed.  (+info)

The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. (6/467)

Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfurase NifS that initiates biogenesis by producing elemental sulfur. The matrix-localized protein is required for synthesis of both mitochondrial and cytosolic Fe/S proteins. The ATP-binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs an essential function only in the generation of cytosolic Fe/S proteins by mediating export of Fe/S cluster precursors synthesized by Nfs1p and other mitochondrial proteins. Assembly of cellular Fe/S clusters constitutes an indispensable biosynthetic task of mitochondria with potential relevance for an iron-storage disease and the control of cellular iron uptake.  (+info)

The single cysteine residue of the Sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes. (7/467)

The periplasmic Sud protein which is induced in Wolinella succinogenes growing by polysulfide respiration, has been previously proposed to serve as a polysulfide binding protein and to transfer polysulfide-sulfur to the active site of polysulfide reductase [Klimmek, O, Kreis, V., Klein, C., Simon, J., Wittershagen, A. & Kroger, A. (1998) Eur. J. Biochem. 253, 263-269.]. The results presented in this communication suggest that polysulfide-sulfur is covalently bound to the single cysteine residue (Cys109) of the Sud monomer, and that Cys109 is required for tight binding of polysulfide-sulfur and for sulfur transfer. A modified Sud protein [(C109S)Sud-His6] in which the cysteine residue was replaced by serine, did not catalyze sulfur transfer from polysulfide to cyanide and did not stimulate electron transport to polysulfide, in contrast to Sud-His6. The polysulfide-sulfur bound to (C109S)Sud-His6 was fully removed upon dialysis against sulfide. After this treatment, Sud-His6 retained one sulfur atom per monomer; thiocyanate was formed upon addition of cyanide to the preparation. After incubation of Sud-His6 with polysulfide, a proportion of the Sud-His6 monomers carried one or two sulfur atoms, as shown by matrix-assisted laser desorption ionization mass spectrometry. The sulfur atoms were absent from monomers derived from Sud-His6 treated with cyanide and from (C109S)Sud-His6 incubated with polysulfide.  (+info)

Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. (8/467)

During the screening for Rhodobacter capsulatus mutants defective in xanthine degradation, one Tn5 mutant which was able to grow with xanthine as a sole nitrogen source only in the presence of high molybdate concentrations (1 mM), a phenotype resembling Escherichia coli mogA mutants, was identified. Unexpectedly, the corresponding Tn5 insertion was located within the moeA gene. Partial DNA sequence analysis and interposon mutagenesis of regions flanking R. capsulatus moeA revealed that no further genes essential for molybdopterin biosynthesis are located in the vicinity of moeA and revealed that moeA forms a monocistronic transcriptional unit in R. capsulatus. Amino acid sequence alignments of R. capsulatus MoeA (414 amino acids [aa]) with E. coli MogA (195 aa) showed that MoeA contains an internal domain homologous to MogA, suggesting similar functions of these proteins in the biosynthesis of the molybdenum cofactor. Interposon mutants defective in moeA did not exhibit dimethyl sulfoxide reductase or nitrate reductase activity, which both require the molybdopterin guanine dinucleotide (MGD) cofactor, even after addition of 1 mM molybdate to the medium. In contrast, the activity of xanthine dehydrogenase, which binds the molybdopterin (MPT) cofactor, was restored to wild-type levels after the addition of 1 mM molybdate to the growth medium. Analysis of fluorescent derivatives of the molybdenum cofactor of purified xanthine dehydrogenase isolated from moeA and modA mutant strains, respectively, revealed that MPT is inserted into the enzyme only after molybdenum chelation, and both metal chelation and Mo-MPT insertion can occur only under high molybdate concentrations in the absence of MoeA. These data support a model for the biosynthesis of the molybdenum cofactor in which the biosynthesis of MPT and MGD are split at a stage when the molybdenum atom is added to MPT.  (+info)