Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. (17/467)

IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  (+info)

Contribution of cysteine desulfurase (NifS protein) to the biotin synthase reaction of Escherichia coli. (18/467)

The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of L-cysteine in an in vitro reaction system. The NifU/S complex enhanced the production of biotin from dethiobiotin by the cells growing in an in vivo reaction system. Moreover, the IscS protein of E. coli stimulated the biotin synthase reaction in the presence of L-cysteine in the cell-free system. These results strongly suggest that cysteine desulfurase participates in the biotin synthase reaction, probably by supplying sulfur to the iron-sulfur cluster of biotin synthase.  (+info)

Enzyme-mediated sulfide production for the reconstitution of [2Fe-2S] clusters into apo-biotin synthase of Escherichia coli. Sulfide transfer from cysteine to biotin. (19/467)

We previously showed that biotin synthase in which the (Fe-S) cluster was labelled with 34S by reconstitution donates 34S to biotin [B. Tse Sum Bui, D. Florentin, F. Fournier, O. Ploux, A. Mejean & A. Marquet (1998) FEBS Lett. 440, 226-230]. We therefore proposed that the source of sulfur was very likely the (Fe-S) centre. This depletion of sulfur from the cluster during enzymatic reaction could explain the absence of turnover of the enzyme which means that to restore a catalytic activity, the clusters have to be regenerated. In this report, we show that the NifS protein from Azotobacter vinelandii and C-DES from Synechocystis as well as rhodanese from bovine liver can mobilize the sulfur, respectively, from cysteine and thiosulfate for the formation of a [2Fe-2S] cluster in the apoprotein of Escherichia coli biotin synthase. The reconstituted enzymes were as active as the native enzyme. When [35S]cysteine was used during the reconstitution experiments in the presence of NifS, labelled (Fe35S) biotin synthase was obtained. This enzyme produced [35S]biotin, confirming the results obtained with the 34S-reconstituted enzyme. NifS was also effective in mobilizing selenium from selenocystine to produce an (Fe-Se) cluster. However, though NifS could efficiently reconstitute holobiotin synthase from the apoform, starting from cysteine, these two effectors had no significant effect on the turnover of the enzyme in the in vitro assay.  (+info)

Identification of the [Fe-S] cluster-binding residues of Escherichia coli biotin synthase. (20/467)

The gene encoding Escherichia coli biotin synthase (bioB) has been expressed as a histidine fusion protein, and the protein was purified in a single step using immobilized metal affinity chromatography. The His(6)-tagged protein was fully functional in in vitro and in vivo biotin production assays. Analysis of all the published bioB sequences identified a number of conserved residues. Single point mutations, to either serine or threonine, were carried out on the four conserved (Cys-53, Cys-57, Cys-60, and Cys-188) and one non-conserved (Cys-288) cysteine residues, and the purified mutant proteins were tested both for ability to reconstitute the [2Fe-2S] clusters of the native (oxidized) dimer and enzymatic activity. The C188S mutant was insoluble. The wild-type and four of the mutant proteins were characterized by UV-visible spectroscopy, metal and sulfide analysis, and both in vitro and in vivo biotin production assays. The molecular masses of all proteins were verified using electrospray mass spectrometry. The results indicate that the His(6) tag and the C288T mutation have no effect on the activity of biotin synthase when compared with the wild-type protein. The C53S, C57S, and C60S mutant proteins, both as prepared and reconstituted, were unable to covert dethiobiotin to biotin in vitro and in vivo. We conclude that three of the conserved cysteine residues (Cys-53, Cys-57, and Cys-60), all of which lie in the highly conserved "cysteine box" motif, are crucial for [Fe-S] cluster binding, whereas Cys-188 plays a hitherto unknown structural role in biotin synthase.  (+info)

Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. (21/467)

Azotobacter vinelandii RhdA uses thiosulfate as the only sulfur donor in vitro, and this apparent selectivity seems to be a unique property among the characterized sulfurtransferases. To investigate the basis of substrate recognition in RhdA, we replaced Thr-232 with either Ala or Lys. Thr-232 was the target of this study since the corresponding Lys-249 in bovine rhodanese has been identified as necessary for catalytic sulfur transfer, and replacement of Lys-249 with Ala fully inactivates bovine rhodanese. Both T232K and T232A mutants of RhdA showed significant increase in thiosulfate-cyanide sulfurtransferase activity, and no detectable activity in the presence of 3-mercaptopyruvate as the sulfur donor substrate. Fluorescence measurements showed that wild-type and mutant RhdAs were overexpressed in the persulfurated form, thus conferring to this enzyme the potential of a persulfide sulfur donor compound. RhdA contains a unique sequence stretch around the catalytic cysteine, and the data here presented suggest a possible divergent physiological function of A. vinelandii sulfurtransferase.  (+info)

Vitamin B-6 deficiency in rats reduces hepatic serine hydroxymethyltransferase and cystathionine beta-synthase activities and rates of in vivo protein turnover, homocysteine remethylation and transsulfuration. (22/467)

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [(2)H(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats [7 and 0.1 mg pyridoxine (PN)/kg diet]. [(2)H(3)]Leucine and [1-(13)C]methionine were also used to examine turnover of protein and methionine pools, respectively. All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [(2)H(3)]leucine. Hepatic [(2)H(2)]methionine production from [(2)H(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [(2)H(3)]cysteine from the [(2)H(3)]serine increased over twofold. In contrast, plasma appearance of [(2)H(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-(13)C]homocysteine/[1-(13)C]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.  (+info)

Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. (23/467)

Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  (+info)

Hypersensitivity of Escherichia coli Delta(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis. (24/467)

We have shown previously that Escherichia coli and Salmonella enterica serovar Typhimurium strains carrying a deletion of the uvrB-bio region are hypersensitive to the mutagenic and toxic action of 6-hydroxylaminopurine (HAP) and related base analogs. This sensitivity is not due to the uvrB excision repair defect associated with this deletion because a uvrB point mutation or a uvrA deficiency does not cause hypersensitivity. In the present work, we have investigated which gene(s) within the deleted region may be responsible for this effect. Using independent approaches, we isolated both a point mutation and a transposon insertion in the moeA gene, which is located in the region covered by the deletion, that conferred HAP sensitivity equal to that conferred by the uvrB-bio deletion. The moeAB operon provides one of a large number of genes responsible for biosynthesis of the molybdenum cofactor. Defects in other genes in the same pathway, such as moa or mod, also lead to the same HAP-hypersensitive phenotype. We propose that the molybdenum cofactor is required as a cofactor for an as yet unidentified enzyme (or enzymes) that acts to inactivate HAP and other related compounds.  (+info)