Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions. (33/445)

The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and consequent decreased emissions of SO(2) and larger particles. These decreases in coal combustion and the decreased concentrations of SO(2) and particles of larger size classes may have led to decreased particle scavenging and may be partially responsible for the observed increases in ultrafine particles. Traffic-related changes, such as increased numbers of trucks and increased use of diesel vehicles in Erfurt, were also associated with increased number concentrations of ultrafine particles. Morning particle peaks of all sizes were associated with NO and CO (markers for traffic) in both the 1991 and 1998 periods. There were significant differences in the ultrafine particle levels for morning hours between 1991 and 1998, suggesting that traffic was the cause of this increase.  (+info)

Effect of air pollution on daily mortality in Hong Kong. (34/445)

In different weather conditions, constituents and concentrations of pollutants, personal exposure, and biologic responses to air pollution may vary. In this study we assessed the effects of four air pollutants on mortality in both cool and warm seasons in Hong Kong, a subtropical city. Daily counts of mortality, due to all nonaccidental causes, and cardiovascular and respiratory diseases were modeled with daily pollutant concentrations [24-hr means for nitrogen dioxide, sulfur dioxide, and particulate matter < 10 microm in aerodynamic diameter (PM(10)); 8-hr mean for ozone]. using Poisson regression. We controlled for confounding factors by fitting the terms in models, in line with those recommended by the APHEA (Air Pollution and Health: a European Approach) protocol. Exposure-response relationships in warm and cool seasons were examined using generalized additive modeling. During the cool season, for a linear extrapolation of 10th-90th percentiles in the pollutant concentrations of all oxidant pollutants, NO(2), SO(2), and O(3), we found significant effects on all the mortality outcomes under study, with relative risks (RR) of 1.04-1.10 (p < 0.038, except p = 0.079 for SO(2) on respiratory mortality). We observed consistent positive exposure-response relationships during the cool season but not during the warm season. The effects of PM(10) were marginally significant (RR = 1.06; p = 0.054) for respiratory mortality but not for the other outcomes (p > 0.135). In this subtropical city, local air quality objectives should take into account that air pollution has stronger health effects during the cool rather than warm season and that oxidant pollutants are more important indicators of health effects than particulates.  (+info)

Investigating regional differences in short-term effects of air pollution on daily mortality in the APHEA project: a sensitivity analysis for controlling long-term trends and seasonality. (35/445)

Short-term effects of air pollution on daily mortality in eight western and five central-eastern European countries have been reported previously, as part of the APHEA project. One intriguing finding was that the effects were lower in central-eastern European cities. The analysis used sinusoidal terms for seasonal control and polynomial terms for meteorologic variables, but this is a more rigid approach than the currently accepted method, which uses generalized additive models (GAM). We therefore reanalyzed the original data to examine the sensitivity of the results to the statistical model. The data were identical to those used in the earlier analyses. The outcome was the daily total number of deaths, and the pollutants analyzed were black smoke (BS) and sulfur dioxide (SO(2)). The analyses were restricted to days with pollutant concentration < 200 microg/m(3) and < 150 microg/m(3) alternately. We used Poisson regression in a GAM model, and combined individual city regression coefficients using fixed and random-effect models. An increase in BS by 50 microg/m(3) was associated with a 2.2% and 3.1% increase in mortality when analysis was restricted to days < 200 microg/m(3) and < 150 microg/m(3), respectively. The corresponding figures were 5.0% and 5.6% for a similar increase in SO(2). These estimates are larger than the ones published previously: by 69% for BS and 55% for SO(2). The increase occurred only in central-eastern European cities. The ratio of western to central-eastern cities for estimates was reduced to 1.3 for BS (previously 4.8) and 2.6 for SO(2) (previously 4.4). We conclude that part of the heterogeneity in the estimates of air pollution effects between western and central-eastern cities reported in previous publications was caused by the statistical approach used and the inclusion of days with pollutant levels above 150 microg/m(3). However, these results must be investigated further.  (+info)

Comparing meta-analysis and ecological-longitudinal analysis in time-series studies. A case study of the effects of air pollution on mortality in three Spanish cities. (36/445)

STUDY OBJECTIVE: The objective of this paper is to introduce a different approach, called the ecological-longitudinal, to carrying out pooled analysis in time series ecological studies. Because it gives a larger number of data points and, hence, increases the statistical power of the analysis, this approach, unlike conventional ones, allows the complementation of aspects such as accommodation of random effect models, of lags, of interaction between pollutants and between pollutants and meteorological variables, that are hardly implemented in conventional approaches. DESIGN: The approach is illustrated by providing quantitative estimates of the short-term effects of air pollution on mortality in three Spanish cities, Barcelona, Valencia and Vigo, for the period 1992-1994. Because the dependent variable was a count, a Poisson generalised linear model was first specified. Several modelling issues are worth mentioning. Firstly, because the relations between mortality and explanatory variables were non-linear, cubic splines were used for covariate control, leading to a generalised additive model, GAM. Secondly, the effects of the predictors on the response were allowed to occur with some lag. Thirdly, the residual autocorrelation, because of imperfect control, was controlled for by means of an autoregressive Poisson GAM. Finally, the longitudinal design demanded the consideration of the existence of individual heterogeneity, requiring the consideration of mixed models. MAIN RESULTS: The estimates of the relative risks obtained from the individual analyses varied across cities, particularly those associated with sulphur dioxide. The highest relative risks corresponded to black smoke in Valencia. These estimates were higher than those obtained from the ecological-longitudinal analysis. Relative risks estimated from this latter analysis were practically identical across cities, 1.00638 (95% confidence intervals 1.0002, 1.0011) for a black smoke increase of 10 microg/m(3) and 1.00415 (95% CI 1.0001, 1.0007) for a increase of 10 microg/m(3) of sulphur dioxide. Because the statistical power is higher than in the individual analysis more interactions were statistically significant, especially those among air pollutants and meteorological variables. CONCLUSIONS: Air pollutant levels were related to mortality in the three cities of the study, Barcelona, Valencia and Vigo. These results were consistent with similar studies in other cities, with other multicentric studies and coherent with both, previous individual, for each city, and multicentric studies for all three cities.  (+info)

The potential impacts of climate variability and change on air pollution-related health effects in the United States. (37/445)

Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.  (+info)

The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. (38/445)

Sulphur dioxide (SO2) is an important air pollutant and causes bronchoconstriction in normal and asthmatic adults. This paper has explored the autonomic consequences of SO2 exposure using the spectral analysis of heart rate variability. Electrocardiogram recordings were made in 12 normal and 12 asthmatic adults undergoing pollutant exposures. Exposures were of a 1 h duration, double blind, in random order, > or = 2 weeks apart and included air and 200 parts per billion SO2. Spectral analysis of R-R intervals was performed. SO2 exposure was associated with an increase in total power (TP) and high (HF) and low frequency (LF) power in the normal subjects, and a reduction in these indices in the subjects with asthma. The difference in TP with SO2 exposure compared to air was +1730 ms2 in the normal group and -1021 ms2 asthmatic group (p<0.003). For HF the respective values were +964 ms2 and -539 ms2 (p=0.02) and for LF, +43 7 ms2 and -57 2 ms2 (p=0.01). No change in lung function or symptoms was observed in either group. This suggests that SO2 exposure at concentrations which are frequently encountered during air pollution episodes can influence the autonomic nervous system. This may be important in understanding the mechanisms involved in SO2 induced bronchoconstriction, and of the cardiovascular effects of air pollution.  (+info)

Noxious gases in greenhouses. (39/445)

The concentration of NO(2) and SO(2) was measured in a commercial greenhouse from 23/9/1999 25/01/2000. The measurements showed that the level of the two gases is very high in the greenhouse atmosphere. Lung function tests in 42 workers showed that temporary work did not influence significantly the respiratory health status.  (+info)

Air pollution and child mortality: a time-series study in Sao Paulo, Brazil. (40/445)

Although most available evidence relating air pollution and mortality was obtained for adults, pollution has been also associated with increased mortality in children, but in a significantly smaller number of studies. This study was designed to evaluate the association between child mortality and air pollution in the city of Sao Paulo, Brazil, from 1994 to 1997. Daily records of mortality due to respiratory diseases for children under 5 years of age were obtained from the municipal mortality information improvement program. Daily concentrations of sulfur dioxide (SO(2)), carbon monoxide (CO), inhalable particulate matter less than 10 microm in diameter (PM(10)), and ozone were obtained from the state air pollution controlling agency. Information on minimum daily temperature and on relative humidity were obtained from the Institute of Astronomy and Geophysics of the University of Sao Paulo. Statistical analysis was performed through generalized additive models considering a Poisson response distribution and a log link. Explanatory variables were time, temperature, humidity, and pollutant concentrations. The loess smoother was applied to time (in order to model seasonality) and temperature. Significant associations between mortality and concentrations of CO, SO(2), and PM(10) were detected. The coefficients (and standard errors) of these three pollutants were 0.0306 (0.0076), 0.0055 (0.0016), and 0.0014 (0.0006), respectively. The observed associations were dose dependent and quite evident after a short period of exposure (2 days). According to the proposed model and considering the mean of the pollutant concentration during the period of the study, the estimated proportions of respiratory deaths attributed to CO, SO(2), and PM(10), when considered individually, are around 15, 13, and 7%, respectively.  (+info)