Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. (41/1610)

ThiI is an enzyme common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. Comparison of the ThiI sequence with protein sequences in the data bases revealed that the Escherichia coli enzyme contains a C-terminal extension displaying sequence similarity to the sulfurtransferase rhodanese. Cys-456 of ThiI aligns with the active site cysteine residue of rhodanese that transiently forms a persulfide during catalysis. We investigated the functional importance of this sequence similarity and discovered that, like rhodanese, ThiI catalyzes the transfer of sulfur from thiosulfate to cyanide. Mutation of Cys-456 to alanine impairs this sulfurtransferase activity, and the C456A ThiI is incapable of supporting generation of 4-thiouridine in tRNA both in vitro and in vivo. We therefore conclude that Cys-456 of ThiI is critical for activity and propose that Cys-456 transiently forms a persulfide during catalysis. To accommodate this hypothesis, we propose a general mechanism for sulfur transfer in which the terminal sulfur of the persulfide first acts as a nucleophile and is then transferred as an equivalent of S(2-) rather than S(0).  (+info)

Long-chain acyl-CoA esters and acyl-CoA binding protein are present in the nucleus of rat liver cells. (42/1610)

A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  (+info)

Site-specific modification and RNA crosslinking of the RNA-binding domain of PKR. (43/1610)

RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR is activated in vitro by binding RNA molecules with extensive duplex structure. To further define the nature of the RNA regulation of PKR, we have prepared and characterized site-specifically modified proteins consisting of the PKR 20 kDa RNA-binding domain (RBD). Here we show that the two cysteines found naturally in this domain can be altered by site-directed mutagenesis without loss of RNA binding affinity or the RNA-regulated kinase activity. Introduction of cysteine residues at other sites in the PKR RBD allows for site-specific modification with thiol-selective reagents. PKR RBD mutants reacted selectively with a maleimide to introduce a photoactivatable cross-linking aryl azide at three different positions in the protein. RNA crosslinking efficiency was found to be dependent on the amino acid modified, suggesting differences in access to the RNA from these positions in the protein. One of the amino acid modifications that led to crosslinking of the RNA is located at a residue known to be an autophosphorylation site, suggesting that autophosphorylation at this site could influence the RNA binding properties of PKR. The PKR RBD conjugates described here and other similar reagents prepared via these methods are applicable to future studies of PKR-RNA complexes using techniques such as photocrosslinking, fluorescence resonance energy transfer and affinity cleaving.  (+info)

Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). (44/1610)

The name Leptospirillum ferrooxidans is not in the Approved Lists of Bacterial Names (1980), nor has it been subsequently validly published. In accordance with the rules of the International Code of Nomenclature of Bacteria, the name Leptospirillum for the genus (gen. nov., nom. rev.) and Leptospirillum ferrooxidans for the species (sp. nov., nom. rev.) is revived here. The type species is Leptospirillum ferrooxidans strain L15T (= DSM 2705T). The second species in the genus is Leptospirillum thermoferrooxidans (Golovacheva et al. 1992) (type strain L-88T; Institute of Microbiology, INMI, Moscow, Russia).  (+info)

Ethanol and arachidonic acid increase alpha 2(I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1. Role of H2O2 and cyclooxygenase-2. (45/1610)

The ability of ethanol and arachidonic acid (AA), as inducers of oxidative stress and key factors in alcoholic liver disease, to up-regulate alpha 2 collagen type I (COL1A2) gene expression was studied in a hepatic stellate cell line overexpressing the ethanol-inducible cytochrome P450 2E1 (CYP2E1) (E5 cells). A time- and dose-dependent induction in COL1A2 mRNA by ethanol or AA was observed that was prevented by diallylsulfide, a CYP2E1 inhibitor. Nuclear run-on experiments showed transcriptional activation of the COL1A2 gene by ethanol and AA. Catalase abrogated the increase in COL1A2 mRNA suggesting an H(2)O(2)-dependent mechanism. Cyclooxygenase-2 (COX-2) levels and production of prostaglandin E(2) upon addition of AA were elevated in the E5 cells. Incubation with NS-398, a COX-2 inhibitor, blocked the effect of AA, but not of ethanol, on COL1A2 expression suggesting that CYP2E1 activates COX-2 expression, and the oxidation of AA by COX-2 is responsible for the increase in COL1A2. Activity of a reporter construct driven by -378 base pairs of the proximal promoter region of the COL1A2 gene increased in E5 but not control cells and was further increased by ethanol or AA. These experiments link CYP2E1-dependent oxidative stress to induction of COX-2 and the actions of ethanol and AA on activation of collagen gene expression in hepatic stellate cells.  (+info)

Inhibition of CYP2E1 reverses CD4+ T-cell alterations in trichloroethylene-treated MRL+/+ mice. (46/1610)

Trichloroethylene is an organic solvent that is primarily used as a degreasing agent for metals. There is increasing evidence in both humans and animal models that trichloroethylene promotes the development of autoimmunity, but little is known about the mechanisms that mediate the effect of trichloroethylene on the immune system. Metabolic activation of trichloroethylene is considered an obligatory pathway for other known toxicities such as hepatotoxicity, nephrotoxicity, and carcinogenicity. Trichloroethylene is metabolized by the cytochromes P450, primarily cytochrome P450 2E1 (CYP2E1). To investigate whether metabolism by CYP2E1 is required for immunomodulation, we treated autoimmune prone MRL+/+ mice with trichloroethylene in the drinking water for 4 weeks, in the presence or absence of diallyl sulfide, a specific inhibitor of CYP2E1. Using an antibody that recognizes proteins covalently modified by a reactive metabolite of trichloroethylene; two immunoreactive proteins were detected in liver microsomes from trichloroethylene-treated mice. Formation of these trichloroethylene-protein adducts, an indicator of metabolic activation, was completely inhibited in animals that were concomitantly treated with trichloroethylene and diallyl sulfide. The level of CYP2E1 apoprotein in liver microsomes was significantly reduced in the presence of diallyl sulfide. The enhanced mitogen-induced proliferative capacity of T cells from trichloroethylene-treated MRL+/+ mice was inhibited if the mice were also treated with diallyl sulfide. In addition, the reduction in interleukin-4 levels secreted by activated CD4+ T cells from trichloroethylene-treated mice was reversed if the mice were also treated with diallyl sulfide. Taken collectively, metabolism of trichloroethylene by CYP2E1 is responsible, at least in part, for the CD4+ T cell alterations associated with exposure to this environmental toxicant.  (+info)

Electron paramagnetic resonance evidence for a novel interconversion of [3Fe-4S](+) and [4Fe-4S](+) clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. (47/1610)

We report an EPR study of the iron-sulfur enzyme, anaerobic ribonucleotide reductase activase from Lactococcus lactis. The activase (nrdG gene) together with S-adenosyl-L-methionine (AdoMet) give rise to a glycyl radical in the NrdD component. A semi-reduced [4Fe-4S](+) cluster with an axially symmetric EPR signal was produced upon photochemical reduction of the activase. Air exposure of the reduced enzyme gave a [3Fe-4S](+) cluster. The Fe(3)S(4) cluster was convertible to the EPR-active [4Fe-4S](+) cluster by renewed treatment with reducing agents, demonstrating a reversible [3Fe-4S](+)- to-[4Fe-4S](+) cluster conversion without exogenous addition of iron or sulfide. Anaerobic reduction of the activase by a moderate concentration of dithionite also resulted in a semi-reduced [4Fe-4S](+) cluster. Prolonged reduction gave an EPR-silent fully reduced state, which was enzymatically inactive. Both reduced states gave the [3Fe-4S](+) EPR signal after air exposure. The iron-sulfur cluster interconversion was also studied in the presence of AdoMet. The EPR signal of semi-reduced activase-AdoMet had rhombic symmetry and was independent of which reductant was applied, whereas the EPR signal of the [3Fe-4S](+) cluster after air exposure was unchanged. The results indicate that an AdoMet-mediated [4Fe-4S](+) center is the native active species that induces the formation of a glycyl radical in the NrdD component.  (+info)

The Archean sulfur cycle and the early history of atmospheric oxygen. (48/1610)

The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).  (+info)