Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. (25/976)

A number of in vitro studies have shown that activation of muscarinic receptors by cholinergic agonists stimulates the nonamyloidogenic, alpha-secretase-processing pathway of amyloid precursor protein (APP). To determine whether increased cholinergic neurotransmission can modify the APP processing in vivo, we administered a muscarinic receptor agonist (RS86) to normal or aged rats and rats with severe basal forebrain cholinergic deficits (induced by 192 IgG-saporin). The levels of the cell-associated APP in neocortex, hippocampus, and striatum, as well as the secreted form of APP (APPs) in cerebrospinal fluid, were examined by Western blots. Additionally, we investigated the association between the altered APP levels and behavioral deficits caused by cholinergic lesions. We found that treatment with muscarinic receptor agonist resulted in decreased APP levels in neocortex and hippocampus and increased levels of APPs in cerebrospinal fluid. Regulation of APP processing by the muscarinic agonist treatment occurred not only in normal rats, but also in aged and cholinergic denervated rats that model this aspect of Alzheimer's disease. Interestingly, we found that elevation of APP in neocortex correlated with the cognitive deficits in water-maze testing of rats with cholinergic dysfunction. These data indicate that increased cholinergic neurotransmission can enhance nonamyloidogenic APP processing in intact and lesioned rats and that APP may be involved in cognitive performance.  (+info)

The dimerization domain of the b subunit of the Escherichia coli F(1)F(0)-ATPase. (26/976)

In this study a series of N- and/or C-terminal truncations of the cytoplasmic domain of the b subunit of the Escherichia coli F(1)F(0) ATP synthase were tested for their ability to form dimers using sedimentation equilibrium ultracentrifugation. The deletion of residues between positions 53 and 122 resulted in a strongly decreased tendency to form dimers, whereas all the polypeptides that included that sequence exhibited high levels of dimer formation. b dimers existed in a reversible monomer-dimer equilibrium and when mixed with other b truncations formed heterodimers efficiently, provided both constructs included the 53-122 sequence. Sedimentation velocity and (15)N NMR relaxation measurements indicated that the dimerization region is highly extended in solution, consistent with an elongated second stalk structure. A cysteine introduced at position 105 was found to readily form intersubunit disulfides, whereas other single cysteines at positions 103-110 failed to form disulfides either with the identical mutant or when mixed with the other 103-110 cysteine mutants. These studies establish that the b subunit dimer depends on interactions that occur between residues in the 53-122 sequence and that the two subunits are oriented in a highly specific manner at the dimer interface.  (+info)

In vivo evaluation of platelet-endothelial interactions in retinal microcirculation of rats. (27/976)

PURPOSE: This study was designed to develop a new method to evaluate the dynamics of platelets in the retinal microcirculation in vivo and to investigate quantitatively the platelet-endothelial interactions in rat retina with the use of this system. METHODS: Isolated platelet samples were labeled with carboxyfluorescein diacetate succinimidyl ester. After intravenous administration, platelet behavior in the retinal microcirculation was evaluated with a scanning laser ophthalmoscope. The images were recorded on S-VHS videotape and analyzed with a computer-assisted image analysis system. The platelet- endothelial interactions in the retinal microcirculation were also investigated with the use of lipopolysaccharide-stimulated endothelium or platelets activated with thrombin. RESULTS: Fluorescent platelets were recognized as distinct dots in the retinal microcirculation and could be traced frame by frame. The velocity of platelets in the retinal arteries, capillaries, and veins was 26.1+/-6.4, 1.6+/-0.4, and 19.9+/-8.2 mm/sec, respectively. In control rats, even the activated platelets showed minimal interaction with retinal endothelial cells. In contrast, stimulated retinal endothelium showed active platelet- endothelial interactions; many platelets were observed rolling and adhering along the major retinal veins. The interactions between platelets and stimulated endothelial cells were substantially inhibited with the injection of P-selectin monoclonal antibody. CONCLUSIONS: The present study demonstrated a new method to visualize platelet behavior in the retinal microcirculation in vivo. This method will allow quantitative evaluation of platelet dynamics and platelet- endothelial interactions in retinal pathologic conditions.  (+info)

Uptake and intracellular transport of acidic fibroblast growth factor: evidence for free and cytoskeleton-anchored fibroblast growth factor receptors. (28/976)

Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfona te, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.  (+info)

Stage-specific expression of a Schistosoma mansoni polypeptide similar to the vertebrate regulatory protein stathmin. (29/976)

The ubiquitous vertebrate protein stathmin is expressed and phosphorylated in response to a variety of external and internal signals. Stathmin, in turn, controls cell growth and differentiation through its capacity to regulate microtubule assembly dynamics. This is the first report on the molecular cloning and characterization of a stathmin-like protein (SmSLP) in an invertebrate, the human blood fluke Schistosoma mansoni. SmSLP is first synthesized at high levels in the intermediate molluscan host and completely disappears 48 h after penetration into the mammalian host. The protein is preferentially iodinated in intact immature parasites using the Bolton-Hunter reagent, can be quantitatively extracted in high salt buffers, and remains soluble after boiling. Native SmSLP was partially sequenced, and its complete structure was derived from the cloning and sequencing of its cDNA. The sequence is up to 26% identical to vertebrate stathmin sequences and contains two potential phosphorylation sites. Native SmSLP is indeed phosphorylated because phosphatase digestion shifts its mobility in electrofocusing gels. SmSLP associates with tubulin, as suggested by immune co-precipitation results. In vitro experiments demonstrated that SmSLP inhibits tubulin assembly and causes the depolymerization of preassembled microtubules, thus probably fulfilling regulatory roles in critical steps of schistosome development.  (+info)

Fluorescent dyes for lymphocyte migration and proliferation studies. (30/976)

Fluorescent dyes are increasingly being exploited to track lymphocyte migration and proliferation. The present paper reviews the properties and performance of some 14 different fluorescent dyes that have been used during the last 20 years to monitor lymphocyte migration. Of the 14 dyes discussed, two stand out as being the most versatile in terms of long-term tracking of lymphocytes and their ability to quantify lymphocyte proliferation. They are the intracellular covalent coupling dye carboxyfluorescein diacetate succinimidyl ester (CFSE) and the membrane inserting dye PKH26. Both dyes have the advantage that they can be used to track cell division, both in vitro and in vivo, due to the progressive halving of the fluorescence intensity of the dyes in cells after each division. However, CFSE appears to have the edge over PKH26 based on homogeneity of lymphocyte staining and cost. Two other fluorescent dyes, although not suitable for lymphocyte proliferation studies, are valuable tracking dyes for short-term (up to 3 day) lymphocyte migration experiments, namely the DNA-binding dye Hoechst 33342 and the cytoplasmic dye calcein. In the future it is highly likely that additional fluorescent dyes, with different spectral properties to CFSE, will become available, as well as membrane inserting fluorescent dyes that more homogeneously label lymphocytes than PKH26.  (+info)

Divided we stand: tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. (31/976)

Most techniques for assessing cell division can either detect limited numbers of cell divisions (bromodeoxyuridine incorporation) or only quantify overall proliferation (tritiated thymidine incorporation). In the majority of cases, viable cells of known division history cannot subsequently be obtained for functional studies. The cells of the immune system undergo marked proliferation and differentiation during the course of an immune response. The relative lack of an organized structure of the lymphohaemopoietic system, in contrast with other organ systems, makes lineage interrelationships difficult to study. Coupled with the remarkable degree of mobility engendered by recirculation, the differentiation occurring along with cell division in the immune system has not been readily accessible for investigation. The present article reviews the development of a cell division analysis procedure based on the quantitative serial halving of the membrane permeant, stably incorporating fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE or CFDA, SE). The technique can be used both in vitro and in vivo, allowing eight to 10 successive divisions to be resolved by flow cytometry. Furthermore, viable cells from defined generation numbers can be sorted by flow cytometry for functional analysis.  (+info)

Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. (32/976)

Mature T and B lymphocytes respond to receptor-delivered signals received during and following activation. These signals regulate the rates of cell death, growth, differentiation and migration that ultimately establish the behaviour patterns collectively referred to as immune regulation. We have been pursuing the philosophy that in vitro systems of lymphocyte stimulation, when analysed quantitatively, help reveal the logical attributes of lymphocyte behaviour. The development of carboxyfluorescein diacetate succinimidyl ester (CFSE) to track division has enabled the variable of division number to be incorporated into these quantitative analyses. Our studies with CFSE have established a fundamental link between differentiation and division number. Isotype switching, expression of T cell cytokines, surface receptor alterations and changes to intracellular signalling components all display independent patterns of change with division number. The stochastic aspects of these changes and the ability of external signals to independently regulate them argue for a probabilistic modelling framework for describing and understanding immune regulation.  (+info)