Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. (1/714)

Strain 130ZT was isolated from the bovine rumen. It is a facultatively anaerobic, pleomorphic, Gram-negative rod. It exhibits a 'Morse code' form of morphology, which is characteristic of the genus Actinobacillus. Strain 130ZT is a capnophilic, osmotolerant succinogen that utilizes a broad range of sugars. It accumulates high concentrations of succinic acid (> 70 g l-1). Strain 130ZT is positive for catalase, oxidase, alkaline phosphatase and beta-galactosidase, but does not produce indole or urease. Acid but no gas is produced from D-glucose and D-fructose. 16S rRNA sequence analysis places strain 130ZT within the family Pasteurellaceae; the most closely related members of the family Pasteurellaceae have 16S rRNA similarities of 95.5% or less with strain 130ZT. Strain 130ZT was compared with Actinobacillus lignieresii and the related Bisgaard Taxa 6 and 10. Based upon morphological and biochemical properties, strain 130ZT is most similar to members of the genus Actinobacillus within the family Pasteurellaceae. It is proposed that strain 130ZT be classified as a new species, Actinobacillus succinogenes. The type strain of Actinobacillus succinogenes sp. nov. is ATCC 55618T.  (+info)

Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion. (2/714)

Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunteers for its stimulatory action on gastric acid output and gastrin release. Five substances were detected by high-performance liquid chromatography and were analyzed by mass spectrometry and 1H-13C nuclear magnetic resonance spectroscopy. At the end of the separation process of the five identified substances, only the two dicarboxylic acids, maleic acid and succinic acid, had a significant (P < 0.05) stimulatory action on gastric acid output (76% and 70% of fermented glucose, respectively), but not on gastrin release. When given together, they increased gastric acid output by 100% of fermented glucose and by 95% of maximal acid output. We therefore conclude that maleic acid and succinic acid are the powerful stimulants of gastric acid output in fermented glucose and alcoholic beverages produced by fermentation, and that gastrin is not their mediator of action.  (+info)

The tricarboxylic acid cycle of Helicobacter pylori. (3/714)

The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  (+info)

Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b. (4/714)

The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  (+info)

Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. (5/714)

We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.  (+info)

Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. (6/714)

The effects of chloroacetaldehyde (CAA) and methylene blue, both alone and together, on mitochondrial metabolism, hepatic glutathione content, and bile flow were investigated in rats. Oxidation of [1-14C]palmitic acid, [1-14C]octanoic acid, and [1,4-14C]succinic acid allowed for the differentiation between carnitine-dependent long-chain fatty acid metabolism, medium chain fatty acid oxidation, and citric acid cycle activity, respectively. CAA, a metabolite of the anticancer drug ifosfamide, which may be responsible for ifosfamide-induced encephalopathy, inhibited palmitic acid metabolism but not octanoic or succinic acid oxidation, depleted hepatic glutathione, and stimulated bile flow. Methylene blue, which is clinically used to either prevent or reverse ifosfamide-associated encephalopathy, markedly stimulated palmitic acid oxidation either in the presence or absence of CAA, but did not affect the oxidation of octanoic and succinic acid or hepatic glutathione. Taken together, this study demonstrates that CAA inhibits palmitic acid metabolism. Methylene blue stimulates long-chain fatty acid oxidation, most likely by facilitating the translocation of fatty acids into mitochondria, and compensates for the CAA effect in vivo.  (+info)

Interactions between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a 1H and 13C nuclear magnetic resonance and enzymatic study. (7/714)

The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.  (+info)

Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. (8/714)

Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia strains have two dissimilar genes for this enzyme, while non-phthalate-degrading B. cepacia strains have only a single gene. The sequenced gene was labeled ophE, due to the fact that it is specifically induced by phthalate as shown by lacZ gene fusions. Insertional knockout mutants lacking ophE grow noticeably slower on phthalate while exhibiting normal rates of growth on other substrates. The fact that elevated levels of quinolinate phosphoribosyl transferase enhance growth on phthalate stems from the structural similarities between phthalate and quinolinate: phthalate is a competitive inhibitor of this enzyme and the phthalate catabolic pathway cometabolizes quinolinate. The recruitment of this gene for growth on phthalate thus gives B. cepacia an advantage over other phthalate-degrading bacteria in the environment.  (+info)