Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. (57/34326)

A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1'-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 microM, respectively. The enzyme had no activity with 1-alk-1'-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first approximately 40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  (+info)

Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. (58/34326)

Here we report the sequence, expression in Escherichia coli cells, and characterization of a new small-form lysophospholipase named lysophospholipase II from mouse embryo. The cDNA clone was found and identified among mouse expressed sequence tags in the database search for the homologue of lysophospholipase I previously cloned from rat liver (H. Sugimoto et al., J. Biol. Chem. 271 (1996) 7705-7711). The predicted amino acids sequence contained 231 residues with a calculated molecular weight of 24794, and showed 64% identity to that of lysophospholipase I with the Gly-X-Ser-X-Gly esterase/lipase consensus. The lacZ fusion protein expressed in E. coli cells exhibited lysophospholipase activity and reacted with antibody raised against previously purified pig gastric lysophospholipase II (H. Sunaga et al., Biochem. J. 308 (1995) 551-557), but not with antibody against rat liver lysophospholipase I. The expressed enzyme was purified to a specific activity of 0.15 micromol/min per mg by DEAE-Sepharose A-500 chromatography. The enzyme preferentially utilized zwitterionic lysophospholipids in the order of lysophosphatidylcholine>lysophosphatidylethanolamine, but poorly acidic lysophospholipids, such as lysophosphatidylserine, lysophosphatidylinositol, and lysophosphatidic acid. Not only the 1-acyl isomer, but also the 2-acyl isomer were deacylated. Northern blot analysis and reverse transcription-polymerase chain reaction revealed that lysophospholipase II transcript as well as lysophospholipase I transcript was widely distributed in mouse tissues.  (+info)

Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. (59/34326)

Previously we reported that lysophospholipase D in rat plasma hydrolyzes endogenous unsaturated lysophosphatidylcholines (LPCs) preferentially to saturated LPCs to lysophosphatidic acids with growth factor-like and hormone-like activities. In this study, we examined the possibility that association of LPCs with different proteins in rat plasma has an effect on the preference of lysophospholipase D for unsaturated LPCs. Large portions of various LPCs were found to be recovered in the lipoprotein-poor bottom fraction. Furthermore, the percentages of LPCs associated with albumin isolated from rat plasma were shown not to be consistent with their percentage conversions to lysophosphatidic acids by lysophospholipase D on incubation of rat plasma at 37 degrees C. These results indicate that distinct distributions of LPCs in the plasma protein fractions are not critical factors for the substrate specificity of lysophospholipase D. Experiments with Nagase analbuminemic rats suggested that albumin-LPC complexes are not necessarily required for the hydrolysis by lysophospholipase D; lipoprotein-associate LPCs appeared to be good substrates for the phospholipase. We found that both saturated and unsaturated LPCs are present mainly as 1-acyl isomers in rat plasma. This result indicates that the preference of lysophospholipase D for unsaturated LPCs is not attributable to a difference in position of the acyl group attached to the glycerol backbone of LPC. In addition, lysophospholipase D was also found to attack choline phospholipids with a long chain group and a short chain alkyl group, although their percentage hydrolyses were low. Taken altogether, these results suggest that lysophospholipase D shows higher affinities for free forms of unsaturated acyl type LPCs equilibrated with albumin-bound and lipoprotein-associated forms, than for free forms of saturated acyl type LPCs and analogs of platelet-activating factor.  (+info)

Engineering a chimeric pyrroloquinoline quinone glucose dehydrogenase: improvement of EDTA tolerance, thermal stability and substrate specificity. (60/34326)

An engineered Escherichia coli PQQ glucose dehydrogenase (PQQGDH) with improved enzymatic characteristics was constructed by substituting and combining the gene-encoding protein regions responsible for EDTA tolerance, thermal stability and substrate specificity. The protein region responsible for complete EDTA tolerance in Acinetobacter calcoaceticus, which is recognized as the indicator of high stability in co-factor binding, was elucidated. The region is located between 32 and 59% from the N-terminus of A. calcoaceticus PQQGDH(A27 region) and also corresponds to the same position from 32 to 59% from the N-terminus in E. coli PQQGDH, though E. coli PQQGDH is EDTA sensitive. We previously reported that the C-terminal 3% region of A. calcoaceticus (A3 region) played an important role in the increase of thermal stability, and that His775Asn substitution in E. coli PQQGDH resulted in an increase in the substrate specificity of E. coli PQQGDH towards glucose. Based on these findings, chimeric and/or mutated PQQGDHs, E97A3 H775N, E32A27E41 H782N, E32A27E38A3 and E32A27E38A3 H782N were constructed to investigate the compatibility of two protein regions and one amino acid substitution. His775 substitution to Asn corresponded to His782 substitution to Asn (H782N) in chimeric enzymes harbouring the A27 region. Since all the chimeric PQQGDHs harbouring the A27 region were EDTA tolerant, the A27 region was found to be compatible with the other region and substituted amino acid responsible for the improvement of enzymatic properties. The contribution of the A3 region to thermal stability complemented the decrease in the thermal stability due to the His775 or His782 substitution to Asn. E32A27E38A3 H782N, which harbours all the above mentioned three regions, showed improved EDTA tolerance, thermal stability and substrate specificity. These results suggested a strategy for the construction of a semi-artificial enzyme by substituting and combining the gene-encoding protein regions responsible for the improvement of enzyme characteristics. The characteristics of constructed chimeric PQQGDH are discussed based on the predicted model, beta-propeller structure.  (+info)

RNA determinants for translational editing. Mischarging a minihelix substrate by a tRNA synthetase. (61/34326)

The fidelity of protein synthesis requires efficient discrimination of amino acid substrates by aminoacyl-tRNA synthetases. Accurate discrimination of the structurally similar amino acids, valine and isoleucine, by isoleucyl-tRNA synthetase (IleRS) results, in part, from a hydrolytic editing reaction, which prevents misactivated valine from being stably joined to tRNAIle. The editing reaction is dependent on the presence of tRNAIle, which contains discrete D-loop nucleotides that are necessary to promote editing of misactivated valine. RNA minihelices comprised of just the acceptor-TPsiC helix of tRNAIle are substrates for specific aminoacylation by IleRS. These substrates lack the aforementioned D-loop nucleotides. Because minihelices contain determinants for aminoacylation, we thought that they might also play a role in editing that has not previously been recognized. Here we show that, in contrast to tRNAIle, minihelixIle is unable to trigger the hydrolysis of misactivated valine and, in fact, is mischarged with valine. In addition, mutations in minihelixIle that enhance or suppress charging with isoleucine do the same with valine. Thus, minihelixIle contains signals for charging (by IleRS) that are independent of the amino acid and, by itself, minihelixIle provides no determinants for editing. An RNA hairpin that mimics the D-stem/loop of tRNAIle is also unable to induce the hydrolysis of misactivated valine, both by itself and in combination with minihelixIle. Thus, the native tertiary fold of tRNAIle is required to promote efficient editing. Considering that the minihelix is thought to be the more ancestral part of the tRNA structure, these results are consistent with the idea that, during the development of the genetic code, RNA determinants for editing were added after the establishment of an aminoacylation system.  (+info)

DnaB from Thermus aquaticus unwinds forked duplex DNA with an asymmetric tail length dependence. (62/34326)

DnaB helicase is a ring-shaped hexamer of 300 kDa that is essential for replication of the bacterial chromosome. The dnaB gene from Thermus aquaticus was isolated and cloned, and its gene product was expressed and purified to homogeneity. A helicase assay was developed, and optimal conditions for T. aquaticus DnaB activity were determined using a forked duplex DNA substrate. The activity required a hydrolyzable nucleoside triphosphate and both 5'- and 3'-single-stranded DNA tail regions. Under conditions of single enzymatic turnover, the lengths of the 5'- and 3'-single-stranded regions were varied, and 6-10 nucleotides of the 5'-single-stranded tail and 21-30 nucleotides of the 3'-single-stranded tail markedly stimulated the unwinding rate. These data suggest that DnaB from T. aquaticus interacts with both DNA single-stranded tails during unwinding and that a greater portion of the 3'-tail is in contact with the protein. Two models are consistent with these data. In one model, the 5'-single stranded region passes through the central hole of the DnaB ring, and the 3'-tail makes extensive contact with the outside of the protein. In the other model, the 3'-single-stranded region passes through the DnaB ring, and the outside of the protein contacts the 5'-tail.  (+info)

Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. (63/34326)

The highly conserved non-structural protein 2C of picornaviruses is involved in viral genome replication and encapsidation and in the rearrangement of intracellular structures. 2C binds RNA, has nucleoside triphosphatase activity, and shares three motifs with superfamily III helicases. Motifs "A" and "B" are involved in nucleotide triphosphate (NTP) binding and hydrolysis, whereas a function for motif "C" has not yet been demonstrated. Poliovirus RNA replication is inhibited by millimolar concentrations of guanidine hydrochloride (GdnHCl). Resistance and dependence to GdnHCl map to 2C. To characterize the nucleoside triphosphatase activity of 2C, we purified poliovirus recombinant 2C fused to glutathione S-transferase (GST-2C) from Escherichia coli. GST-2C hydrolyzed ATP with a Km of 0.7 mM. Other NTPs, including GTP, competed with ATP for binding to 2C but were poor substrates for hydrolysis. Mutation of conserved residues in motif A and B abolished ATPase activity, as did mutation of the conserved asparagine residue in motif C, an observation indicating the involvement of this motif in ATP hydrolysis. GdnHCl at millimolar concentrations inhibited ATP hydrolysis. Mutations in 2C that confer poliovirus resistant to or dependent on GdnHCl increased the tolerance to GdnHCl up to 100-fold.  (+info)

Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. (64/34326)

Mitochondrial DNA is exposed to oxygen radicals produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions in mitochondrial DNA may lead to structural genomic alterations, mitochondrial dysfunction, and associated degenerative diseases. The pyrimidine hydrate thymine glycol, one of many oxidative lesions, can block DNA and RNA polymerases and thereby exert negative biological effects. Mitochondrial DNA repair of this lesion is important to ensure normal mitochondrial DNA metabolism. Here, we report the purification of a novel rat liver mitochondrial thymine glycol endonuclease (mtTGendo). By using a radiolabeled oligonucleotide duplex containing a single thymine glycol lesion, damage-specific incision at the modified thymine was observed upon incubation with mitochondrial protein extracts. After purification using cation exchange, hydrophobic interaction, and size exclusion chromatography, the most pure active fractions contained a single band of approximately 37 kDa on a silver-stained gel. MtTGendo is active within a broad KCl concentration range and is EDTA-resistant. Furthermore, mtTGendo has an associated apurinic/apyrimidinic-lyase activity. MtTGendo does not incise 8-oxodeoxyguanosine or uracil-containing duplexes or thymine glycol in single-stranded DNA. Based upon functional similarity, we conclude that mtTGendo may be a rat mitochondrial homolog of the Escherichia coli endonuclease III protein.  (+info)