Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. (49/34326)

A low-molecular-weight, high-alkaline pectate lyase (pectate transeliminase, EC 4.2.2.2) was found in an alkaline culture of Bacillus sp. strain KSM-P15, purified to homogeneity, and crystallized. The enzyme had a relative molecular weight of approximately 20,300 as measured by sedimentation equilibrium, with a sedimentation coefficient (s20,w0) of 1.73 S. It was a basic protein with an isoelectric point of pH 10.3, and the alpha-helical content was only 6.6%. In the presence of Ca2+ ions, the enzyme degraded polygalacturonic acid in a random manner to yield 4,5-unsaturated oligo-galacturonides and had its optimal activity around pH 10.5 and 50-55 degrees C. It also had a protopectinase-like activity on cotton fibers. The N-terminal amino acid sequences of the intact protein (28 amino acids) and its two lysyl endopeptidase-cleaved peptide fragments (8 and 12 amino acids) had very low sequence similarity with pectate lyases reported to date. These results strongly suggest that the pectate lyase of Bacillus sp. strain KSM-P15 may be a novel enzyme and belongs in a new family.  (+info)

Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. (50/34326)

For the improvement of N-carbamyl-D-amino acid amidohydrolase (DCase), which can be used for the industrial production of D-amino acids, the stability of DCase from Agrobacterium sp. KNK712 was improved through various combinations of thermostability-related mutations. The thermostable temperature (defined as the temperature on heat treatment for 10 min that caused a decrease in the DCase activity of 50%) of the enzyme which had three amino acids, H57Y, P203E, and V236A, replaced was increased by about 19 degrees C. The mutant DCase, designated as 455M, was purified and its enzymatic properties were studied. The enzyme had highly increased stability against not only temperature but also pH, the optimal temperature of the enzyme being about 75 degrees C. The substrate specificity of the enzyme for various N-carbamyl-D-amino acids was changed little in comparison with that of the native enzyme. Enzymochemical parameters were also measured.  (+info)

Purification and characterization of methylamine oxidase induced in Aspergillus niger AKU 3302. (51/34326)

Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.  (+info)

Comparison of base specificity and other enzymatic properties of two protozoan ribonucleases from Physarum polycephalum and Dictyostelium discoideum. (52/34326)

Base specificity and other enzymatic properties of two protozoan RNases, RNase Phyb from a true slime mold (Physarum polycephalum) and RNase DdI from a cellular slime mold (Dictyostelium discoideum), were compared. These two RNases have high amino acid sequence similarity (83 amino acid residues, 46%). The base specificities of two base recognition sites, The B1 site (base recognition site for the base at 5'-side of scissile phosphodiester bond) and the B2 site (base recognition site for the base at 3'-side of the scissile bond) of the both enzymes were estimated by the rates of hydrolysis of 16 dinucleoside phosphates. The base specificities estimated of B1 and B2 sites of RNase Phyb and RNase DdI were A, G, U > C and A > or = G > C > U, and A > or = G, U > C and G > U > A, C, respectively. The base specificities estimated from the depolymerization of homopolynucleotides and those from the releases of four mononucleotides upon digestion of RNA coincided well with those of the B2 sites of both enzymes. Thus, in these enzymes, the contribution of the B2 site to base specificity seems to be larger than that of the B1 site. pH-stability, optimum temperature, and temperature stability, of both enzymes are discussed considering that RNase Phyb has one disulfide bridge deleted, compared to the RNase DdI with four disulfide bridges.  (+info)

Purification and characterization of Aspergillus ficuum endoinulinase. (53/34326)

Endoinulinase from Aspergillus ficuum, which catalyzes the hydrolysis of inulin via an endo-cleavage mode, was purified by chromatography from Novozym 230 as a starting commercial enzyme mixture on CM-Sephadex and DEAE-Sepharose, and by preparative electrophoresis under native conditions. The enzyme was estimated to be pure on the basis of its I/S ratio, whose value was infinite in our assay conditions. Two forms separated by using this method. SDS gel electrophoresis showed the two purified forms to respectively exhibit molecular weights of 64,000 +/- 500 and 66,000 +/- 1,000. The results of deglycosylation indicated that the two forms were originally the same protein but with different sugar contents. A molecular weight of 54,800 +/- 1,500 was found by gel filtration of the native enzyme, indicating the native functional protein to be a monomer. The enzyme showed nearly absolute substrate specificity towards inulin and inulooligosaccharides, and acted via an endo-attack to produce mainly inulotriose during the late stage of the reaction. The apparent Km and Vmax values for inulin hydrolysis were 8.1 +/- 1.0 mM and 773 +/- 60 U/mg, respectively. The internal peptides of the enzyme showed sequence homology to the endoinulinase of Penicillium purpurogenum.  (+info)

Separation and properties of two acetylacetoin reductases from Bacillus cereus YUF-4. (54/34326)

The separation and purification of two kinds of acetylacetoin reductases (AACRs) from Bacillus cereus YUF-4 were examined. NADPH-linked AACR (AACR I) and NADH-linked AACR (AACR II) were separated from each other by ammonium sulfate fractionation, DEAE-cellulose chromatography, and hydroxyapatite chromatography. The former was purified 3.4-fold with a yield of 10.0%, and the latter was purified 29-fold with a yield of 15.6%. The two enzymes differ from each other in some enzymic properties such as substrate specificity.  (+info)

Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. (55/34326)

Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, only site I remaining). Mutations of amino acids Asp102 (D102) or Met103 (M103) were sufficient to permit catalysis of recombination between site I and a full res, but not between two copies of site I. A double mutant resolvase, with a D102Y mutation and an additional activating mutation at Glu124 (E124Q), recombined substrates containing only two copies of site I, in vivo and in vitro. In these novel site Ixsite I reactions, product topology is no longer restricted to the normal simple catenane, indicating synapsis by random collision. Furthermore, the mutants have lost the normal specificity for directly repeated sites and supercoiled substrates; that is, they promote recombination between pairs of res sites in linear molecules, or in inverted repeat in a supercoiled molecule, or in separate molecules.  (+info)

Comparison of the stability and substrate specificity of purified peroxisomal 3-oxoacyl-CoA thiolases A and B from rat liver. (56/34326)

The specific activities and substrate specificities of 3-oxoacyl-CoA thiolase A (thiolase A) purified from normal rat liver peroxisomes and 3-oxoacyl-CoA thiolase B (thiolase B) isolated from livers of rats treated with the peroxisome proliferator clofibrate were virtually identical. The enzymes could be distinguished by their N-terminal amino acid sequences, their isoelectric points and their stability, the latter being higher for thiolase A. Contrary to thiolase B, which showed a marked cold lability in the presence of KCl by dissociating into monomers with poor activity, thiolase A retained its full activity and its homodimeric structure under these conditions.  (+info)