Tools for comparative protein structure modeling and analysis. (41/1667)

The following resources for comparative protein structure modeling and analysis are described (http://salilab.org): MODELLER, a program for comparative modeling by satisfaction of spatial restraints; MODWEB, a web server for automated comparative modeling that relies on PSI-BLAST, IMPALA and MODELLER; MODLOOP, a web server for automated loop modeling that relies on MODELLER; MOULDER, a CPU intensive protocol of MODWEB for building comparative models based on distant known structures; MODBASE, a comprehensive database of annotated comparative models for all sequences detectably related to a known structure; MODVIEW, a Netscape plugin for Linux that integrates viewing of multiple sequences and structures; and SNPWEB, a web server for structure-based prediction of the functional impact of a single amino acid substitution.  (+info)

SWISS-MODEL: An automated protein homology-modeling server. (42/1667)

SWISS-MODEL (http://swissmodel.expasy.org) is a server for automated comparative modeling of three-dimensional (3D) protein structures. It pioneered the field of automated modeling starting in 1993 and is the most widely-used free web-based automated modeling facility today. In 2002 the server computed 120 000 user requests for 3D protein models. SWISS-MODEL provides several levels of user interaction through its World Wide Web interface: in the 'first approach mode' only an amino acid sequence of a protein is submitted to build a 3D model. Template selection, alignment and model building are done completely automated by the server. In the 'alignment mode', the modeling process is based on a user-defined target-template alignment. Complex modeling tasks can be handled with the 'project mode' using DeepView (Swiss-PdbViewer), an integrated sequence-to-structure workbench. All models are sent back via email with a detailed modeling report. WhatCheck analyses and ANOLEA evaluations are provided optionally. The reliability of SWISS-MODEL is continuously evaluated in the EVA-CM project. The SWISS-MODEL server is under constant development to improve the successful implementation of expert knowledge into an easy-to-use server.  (+info)

STING Millennium: A web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. (43/1667)

STING Millennium Suite (SMS) is a new web-based suite of programs and databases providing visualization and a complex analysis of molecular sequence and structure for the data deposited at the Protein Data Bank (PDB). SMS operates with a collection of both publicly available data (PDB, HSSP, Prosite) and its own data (contacts, interface contacts, surface accessibility). Biologists find SMS useful because it provides a variety of algorithms and validated data, wrapped-up in a user friendly web interface. Using SMS it is now possible to analyze sequence to structure relationships, the quality of the structure, nature and volume of atomic contacts of intra and inter chain type, relative conservation of amino acids at the specific sequence position based on multiple sequence alignment, indications of folding essential residue (FER) based on the relationship of the residue conservation to the intra-chain contacts and Calpha-Calpha and Cbeta-Cbeta distance geometry. Specific emphasis in SMS is given to interface forming residues (IFR)-amino acids that define the interactive portion of the protein surfaces. SMS may simultaneously display and analyze previously superimposed structures. PDB updates trigger SMS updates in a synchronized fashion. SMS is freely accessible for public data at http://www.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS and http://trantor.bioc.columbia.edu/SMS.  (+info)

NRSAS: Nuclear Receptor Structure Analysis Servers. (44/1667)

We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include homology modelling, structure validation, calculating contacts, accessibility values, hydrogen bonding patterns, predicting mutations and a host of two- and three-dimensional visualisations. The Nuclear Receptor Structure Analysis Servers (NRSAS) are freely accessible at http://www.cmbi.kun.nl/NR/servers/html/ and in-house copies can be obtained upon request.  (+info)

Solution conformation of alphaA-conotoxin EIVA, a potent neuromuscular nicotinic acetylcholine receptor antagonist from Conus ermineus. (45/1667)

We report the solution three-dimensional structure of an alphaA-conotoxin EIVA determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. The alphaA-conotoxin EIVA consists of 30 amino acids representing the largest peptide among the alpha/alphaA-family conotoxins discovered so far and targets the neuromuscular nicotinic acetylcholine receptor with high affinity. alphaA-Conotoxin EIVA consists of three distinct structural domains. The first domain is mainly composed of the Cys3-Cys11-disulfide loop and is structurally ill-defined with a large backbone root mean square deviation of 1.91 A. The second domain formed by residues His12-Hyp21 is extremely well defined with a backbone root mean square deviation of 0.52 A, thus forming a sturdy stem for the entire molecule. The third C-terminal domain formed by residues Hyp22-Gly29 shows an intermediate structural order having a backbone root mean square deviation of 1.04 A. A structurally ill-defined N-terminal first loop domain connected to a rigid central molecular stem seems to be the general structural feature of the alphaA-conotoxin subfamily. A detailed structural comparison between alphaA-conotoxin EIVA and alphaA-conotoxin PIVA suggests that the higher receptor affinity of alphaA-conotoxin EIVA than alphaA-conotoxin PIVA might originate from different steric disposition and charge distribution in the second loop "handle" motif.  (+info)

Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. (46/1667)

Yeast piD261/Bud32 belongs to the piD261 family of atypical protein kinases structurally conserved, from Archaea to human. The disruption of its gene is causative of severely defective growth. Its human homologue, PRPK, interacts with and phosphorylates the oncosuppressor p53 protein, which is lacking in yeast. Here we show that on one hand piD261/Bud32 interacts with and phosphorylates human p53 in vitro, on the other hand PRPK can partially complement the phenotype of yeast lacking the gene encoding piD261/Bud32. These data indicate that, despite considerable structural divergence, members of the piD261 family from distantly related organisms display a remarkable functional conservation.  (+info)

Structure of the semaphorin-3A receptor binding module. (47/1667)

The semaphorins are a large group of extracellular proteins involved in a variety of processes during development, including neuronal migration and axon guidance. Their distinctive feature is a conserved 500 amino acid semaphorin domain, a ligand-receptor interaction module also present in plexins and scatter-factor receptors. We report the crystal structure of a secreted 65 kDa form of Semaphorin-3A (Sema3A), containing the full semaphorin domain. Unexpectedly, the semaphorin fold is a variation of the beta propeller topology. Analysis of the Sema3A structure and structure-based mutagenesis data identify the neuropilin binding site and suggest a potential plexin interaction site. Based on the structure, we present a model for the initiation of semaphorin signaling and discuss potential similarities with the signaling mechanisms of other beta propeller cell surface receptors, such as integrins and the LDL receptor.  (+info)

Crystal structure of dissimilatory sulfite reductase D (DsrD) protein--possible interaction with B- and Z-DNA by its winged-helix motif. (48/1667)

The crystal structure of DsrD from Desulfovibrio vulgaris Hildenborough has been determined at 1.2 A resolution. DsrD is in a dimeric form in the crystal, and five sulfate anions were located on the surface. The structure of DsrD comprises a winged-helix motif, which shows the highest structural homology to similar motifs found in Z-DNA binding proteins and some B-DNA binding proteins. The core structure of the molecule is constructed by intramolecular interactions of hydrophobic residues, which are well conserved in DNA binding proteins, suggesting that these proteins belong to the same superfamily on the basis of the structure. These results indicate a possible role of DsrD in transcription or translation of genes for enzymes catalyzing dissimilatory sulfite reduction.  (+info)