An aromatic hydroxylation reaction catalyzed by a two-component FMN-dependent Monooxygenase. The ActVA-ActVB system from Streptomyces coelicolor. (49/441)

The ActVA-ActVB system from Streptomyces coelicolor isatwo-component flavin-dependent monooxygenase that belongs to an emerging class of enzymes involved in various oxidation reactions in microorganisms. The ActVB component is a NADH:flavin oxidoreductase that provides a reduced FMN to the second component, ActVA the proper monooxygenase. In this work, we demonstrate that the ActVA-ActVB system catalyzes the aromatic monohydroxylation of dihydrokalafungin by molecular oxygen. In the presence of reduced FMN and molecular oxygen, the ActVA active site accommodates and stabilizes an electrophilic flavin FMN-OOH hydroperoxide intermediate species as the oxidant. Surprisingly, we demonstrate that the quinone form of dihydrokalafungin is not oxidized by the ActVA-ActVB system, whereas the corresponding hydroquinone is an excellent substrate. The enantiomer of dihydrokalafungin, nanaomycin A, as well as the enantiomer of kalafungin, nanaomycin D, are also substrates in their hydroquinone forms. The previously postulated product of the ActVA-ActVB system, the antibiotic actinorhodin, was not found to be formed during the oxidation reaction.  (+info)

Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense. (50/441)

There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.  (+info)

Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. (51/441)

The product of the crgA gene of Streptomyces coelicolor represents a novel family of small proteins. A single orthologous gene is located close to the origin of replication of all fully sequenced actinomycete genomes and borders a conserved gene cluster implicated in cell growth and division. In S. coelicolor, CrgA is important for coordinating growth and cell division in sporogenic hyphae. In this study, we demonstrate that CrgA is an integral membrane protein whose peak expression is coordinated with the onset of development of aerial hyphae. The protein localizes to discrete foci away from growing hyphal tips. Upon overexpression, CrgA localizes to apical syncytial cells of aerial hyphae and inhibits the formation of productive cytokinetic rings of the bacterial tubulin homolog FtsZ, leading to proteolytic turnover of this major cell division determinant. In the absence of known prokaryotic cell division inhibitors in actinomycetes, CrgA may have an important conserved function influencing Z-ring formation in these bacteria.  (+info)

Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. (52/441)

We report a system for the efficient removal of a marker flanked by two loxP sites in Streptomyces coelicolor, using a derivative of the temperate phage phiC31 that expresses Cre recombinase during a transient infection. As the test case for this recombinant phage (called Cre-phage), we present the construction of an in-frame deletion of a gene, pglW, required for phage growth limitation or Pgl in S.coelicolor. Cre-phage was also used for marker deletion in other strains of S.coelicolor.  (+info)

Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. (53/441)

The Streptomyces coelicolor partitioning protein ParB binds to numerous parS sites in the oriC-proximal part of the linear chromosome. ParB binding results in the formation of large complexes, which behave differentially during the complex life cycle (D. Jakimowicz, B. Gust, J. Zakrzewska-Czerwinska, and K. F. Chater, J. Bacteriol. 187:3572-3580, 2005). Here we have analyzed the transcriptional regulation that underpins this developmentally specific behavior. Analysis of promoter mutations showed that the irregularly spaced complexes present in vegetative hyphae are dependent on the constitutive parABp(1) promoter, while sporulation-specific induction of the promoter parABp(2) is required for the assembly of arrays of ParB complexes in aerial hyphae and thus is necessary for efficient chromosome segregation. Expression from parABp(2) depended absolutely on two sporulation regulatory genes, whiA and whiB, and partially on two others, whiH and whiI, all four of which are needed for sporulation septation. Because of this pattern of dependence, we investigated the transcription of these four whi genes in whiA and whiB mutants, revealing significant regulatory interplay between whiA and whiB. A strain in which sporulation septation (but not vegetative septation) was blocked by mutation of a sporulation-specific promoter of ftsZ showed close to wild-type induction of parABp(2) and formed fairly regular ParB-enhanced green fluorescent protein foci in aerial hyphae, ruling out strong morphological coupling or checkpoint regulation between septation and DNA partitioning during sporulation. A model for developmental regulation of parABp(2) expression is presented.  (+info)

Expression, purification and X-ray crystallographic analysis of thioredoxin from Streptomyces coelicolor. (54/441)

Thioredoxins are ubiquitous proteins that serve as reducing agents and general protein disulfide reductases. In turn, they are reduced by electrons obtained from the NADPH-containing thioredoxin reductase. Thioredoxins have been isolated and characterized from a large number of organisms. The Gram-positive bacterium Streptomyces coelicolor contains three thioredoxins that are involved in unknown biological processes. trxA from S. coelicolor was cloned and expressed in Escherichia coli and the protein purified and crystallized using the hanging-drop method of vapour diffusion. The crystal structure of thioredoxin A has been determined at 1.5 A resolution using a synchrotron-radiation source. The protein reveals a thioredoxin-like fold with a typical CXXC active site. The crystal exhibits the symmetry of space group P2(1)2(1)2, with unit-cell parameters a = 43.6, b = 71.8, c = 33.2 A.  (+info)

Structure at 1.6 A resolution of the protein from gene locus At3g22680 from Arabidopsis thaliana. (55/441)

The gene product of At3g22680 from Arabidopsis thaliana codes for a protein of unknown function. The crystal structure of the At3g22680 gene product was determined by multiple-wavelength anomalous diffraction and refined to an R factor of 16.0% (Rfree = 18.4%) at 1.60 A resolution. The refined structure shows one monomer in the asymmetric unit, with one molecule of the non-denaturing detergent CHAPS {3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate} tightly bound. Protein At3g22680 shows no structural homology to any other known proteins and represents a new fold in protein conformation space.  (+info)

Coenzyme B12 controls transcription of the Streptomyces class Ia ribonucleotide reductase nrdABS operon via a riboswitch mechanism. (56/441)

Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides and are essential for de novo DNA synthesis and repair. Streptomycetes contain genes coding for two RNRs. The class Ia RNR is oxygen dependent, and the class II RNR is oxygen independent and requires coenzyme B12. Either RNR is sufficient for vegetative growth. We show here that the Streptomyces coelicolor M145 nrdABS genes encoding the class Ia RNR are regulated by coenzyme B12. The 5'-untranslated region of nrdABS contains a 123-nucleotide B12 riboswitch. Similar B12 riboswitches are present in the corresponding regions of eight other S. coelicolor genes. The effect of B12 on growth and nrdABS transcription was examined in a mutant in which the nrdJ gene, encoding the class II RNR, was deleted. B12 concentrations of just 1 mug/liter completely inhibited growth of the NrdJ mutant strain. Likewise, B12 significantly reduced nrdABS transcription. To further explore the mechanism of B12 repression, we isolated in the nrdJ deletion strain mutants that are insensitive to B12 inhibition of growth. Two classes of mutations were found to map to the B12 riboswitch. Both conferred resistance to B12 inhibition of nrdABS transcription and are likely to affect B12 binding. These results establish that B12 regulates overall RNR expression in reciprocal ways, by riboswitch regulation of the class Ia RNR nrdABS genes and by serving as a cofactor for the class II RNR.  (+info)