The rostral ventrolateral medulla mediates the sympathoactivation produced by chemical stimulation of the rat nasal mucosa. (25/4793)

1. We sought to outline the brainstem circuit responsible for the increase in sympathetic tone caused by chemical stimulation of the nasal passages with ammonia vapour. Experiments were performed in alpha-chloralose-anaesthetized, paralysed and artificially ventilated rats. 2. Stimulation of the nasal mucosa increased splanchnic sympathetic nerve discharge (SND), elevated arterial blood pressure (ABP), raised heart rate slightly and inhibited phrenic nerve discharge. 3. Bilateral injections of the broad-spectrum excitatory amino acid receptor antagonist kynurenate (Kyn) into the rostral part of the ventrolateral medulla (RVLM; rostral C1 area) greatly reduced the effects of nasal mucosa stimulation on SND (-80 %). These injections had no effect on resting ABP, resting SND or the sympathetic baroreflex. 4. Bilateral injections of Kyn into the ventrolateral medulla at the level of the obex (caudal C1 area) or into the nucleus tractus solitarii (NTS) greatly attenuated the baroreflex and significantly increased the baseline levels of both SND and ABP. However they did not reduce the effect of nasal mucosa stimulation on SND. 5. Single-unit recordings were made from 39 putative sympathoexcitatory neurons within the rostral C1 area. Most neurons (24 of 39) were activated by nasal mucosa stimulation (+65.8 % rise in discharge rate). Responding neurons had a wide range of conduction velocities and included slow-conducting neurons identified previously as C1 cells. The remaining putative sympathoexcitatory neurons were either unaffected (n = 8 neurons) or inhibited (n = 7) during nasal stimulation. We also recorded from ten respiratory-related neurons, all of which were silenced by nasal stimulation. 6. In conclusion, the sympathoexcitatory response to nasal stimulation is largely due to activation of bulbospinal presympathetic neurons within the RVLM. We suggest that these neurons receive convergent and directionally opposite polysynaptic inputs from arterial baroreceptors and trigeminal afferents. These inputs are integrated within the rostral C1 area as opposed to the NTS or the caudal C1 area.  (+info)

The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. (26/4793)

The effects of modafinil on glutamatergic and GABAergic transmission in the rat medial preoptic area (MPA) and posterior hypothalamus (PH), are analysed. Modafinil (30-300 mg/kg) increased glutamate and decreased GABA levels in the MPA and PH. Local perfusion with the GABAA agonist muscimol (10 microM), reduced, while the GABAA antagonist bicuculline (1 microM and 10 microM) increased glutamate levels. The modafinil (100 mg/kg)-induced increase of glutamate levels was antagonized by local perfusion with bicuculline (1 microM). When glutamate levels were increased by the local perfusion with the glutamate uptake inhibitor L-trans-PDC (0.5 mM), modafinil produced an additional enhancement of glutamate levels. Modafinil (1-33 microM) failed to affect [3H]glutamate uptake in hypothalamic synaptosomes and slices. These findings show that modafinil increases glutamate and decreases GABA levels in MPA and PH. The evidence that bicuculline counteracts the modafinil-induced increase of glutamate levels strengthens the evidence for an inhibitory GABA/glutamate interaction in the above regions controlling the sleep-wakefulness cycle.  (+info)

Effect of ornithine and lactate on urea synthesis in isolated hepatocytes. (27/4793)

1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  (+info)

Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. (28/4793)

We have previously shown that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through activation of caspases not only via CD95/CD95L interaction, but also independently of such death receptors. Here we investigated mitochondria-dependent mechanisms of NO-induced apoptosis in Jurkat leukemic cells. NO donor glycerol trinitrate (at the concentration, which induces apoptotic cell death) caused (1) a significant decrease in the concentration of cardiolipin, a major mitochondrial lipid; (2) a downregulation in respiratory chain complex activities; (3) a release of the mitochondrial protein cytochrome c into the cytosol; and (4) an activation of caspase-9 and caspase-3. These changes were accompanied by an increase in the number of cells with low mitochondrial transmembrane potential and with a high level of reactive oxygen species production. Higher resistance of the CD95-resistant Jurkat subclone (APO-R) cells to NO-mediated apoptosis correlated with the absence of cytochrome c release and with less alterations in other mitochondrial parameters. An inhibitor of lipid peroxidation, trolox, significantly suppressed NO-mediated apoptosis in APO-S Jurkat cells, whereas bongkrekic acid (BA), which blocks mitochondrial permeability transition, provided only a moderate antiapoptotic effect. Transfection of Jurkat cells with bcl-2 led to a complete block of apoptosis due to the prevention of changes in mitochondrial functions. We suggest that the mitochondrial damage (in particular, cardiolipin degradation and cytochrome c release) induced by NO in human leukemia cells plays a crucial role in the subsequent activation of caspase and apoptosis.  (+info)

Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. (29/4793)

BACKGROUND: The cellular content of cAMP generated by activation of adenylylcyclase (AC) through the beta-adrenergic receptor (betaAR) is a key determinant of a cell's response to catecholamine stimulation. We tested the hypothesis that increased AC content, independently of betaAR number, increases responsiveness to catecholamine stimulation in vivo. METHODS AND RESULTS: Transgenic mice with cardiac-directed expression of ACVI showed increased transgene AC expression but no change in myocardial betaAR number or G-protein content. When stimulated through the betaAR, cardiac function was increased, and cardiac myocytes showed increased cAMP production. In contrast, basal cAMP and cardiac function were normal, and long-term transgene expression was not associated with abnormal histological findings or deleterious changes in cardiac function. CONCLUSIONS: The amount of AC sets a limit on cardiac beta-adrenergic signaling in vivo, and increased AC, independent of betaAR number and G-protein content, provides a means to regulate cardiac responsiveness to betaAR stimulation. Overexpressing an effector (AC) does not alter transmembrane signaling except when receptors are activated, in contrast to receptor/G-protein overexpression, which yields continuous activation and has detrimental consequences. Our findings establish the importance of AC content in modulating beta-adrenergic signaling in the heart, suggesting a new target for safely increasing cardiac responsiveness to betaAR stimulation.  (+info)

The effect of calcium ions on testosterone production in Leydig cells from rat testis. (30/4793)

Leydig-cell suspensions, prepared from rat testes, were incubated with different amounts of Ca2+ with and without added luteinizing hormone. The basal testosterone production in the absence of luteinizing hormone was unaffected by the Ca2+ concentration in the incubation medium. The luteinizing hormone-stimulated testosterone production, however, was progressively decreased in the absence of Ca2+ to one-third of that with 2.50 mM-Ca2+. This decrease in luteinizing hormone-stimulated testosterone production was independent of the different concentrations of luteinizing hormone (0-10mug/ml) used and could be restored by the addition of Ca2+ to the incubation medium. The restoration of the stimulation was achieved within 30 min after the addition of Ca2+ to the medium. Activation of cyclic AMP-dependent protein kinase by luteinizing hormone was not decreased by omission of Ca2+ from the incubation medium, suggesting that Ca2+ may be involved in steroidogenesis at a stage beyond the luteinizing hormone receptor-adenylate cyclase-protein kinase system.  (+info)

Platelet-aggregating activity of type I and type III collagens from human aorta and chicken skin. (31/4793)

Human or chicken type III collagen dissolved in 0.1 M-acetic acid was much more potent than type I collagen at inducing platelet aggregation. After incubation in 0.38M-Na2HPO4 to promote fibrillogenesis, the platelet-aggregating activity of both collagen types increased, and type I was then virtually equiactive with type III. Preincubation in cell-free plasma increased the activity of chicken but not that of human collagen. The platelet-aggregating activity of type III collagen did not appear to depend on the integrity of the intrachain disulphide bonds.  (+info)

Effect of detergents on the N-and ring-hydroxylation of 2-acetamidofluorene by hamster liver microsomal preparations. (32/4793)

Effects of detergents such as cholate, deoxycholate and Triton X-100 were studied on N-and ring-hydroxylation of 2-acetamidofluorene by reconstituted and unresolved microsomal systems from livers of hamsters pretreated with 3-methylcholanthrene. Triton X-100 (2.5 mg/nmol of cytochrome P-448) inhibited N-and ring-hydroxylation by wholemicrosomal preparations by 40 and 90% respectively Deoxycholate at the same concentration inhibited both hydroxylations completely, whereas cholate inhibited N-and ring-hydroxylation by 40 and 50% respectively. In reconstitution studies, the presence of Triton X-100(0.5-1.0mg/nmol of cytochrome P-448) along with unsolubilized cytochrome P-448 fraction and solubilized reductase fraction increased N-hydroxylation to an appreciable extent compared with ring-hydroxylation. Both cholate and deoxycholate at 0.5-1.0 mg concentrations had a greater stimulatory effect on ring-than on N-hydroxylation activity in such a reconstituted system.  (+info)