Genetic differences in cholesterol absorption in 129/Sv and C57BL/6 mice: effect on cholesterol responsiveness. (9/1766)

This study compared the cholesterolemic response of two strains of mice with genetically determined differences in cholesterol absorption. When fed a basal low-cholesterol diet, 129/Sv mice absorbed cholesterol twice as efficiently as did C57BL/6 mice (44% vs. 20%). Total lipid absorption, in contrast, averaged 80-82% in both strains. The higher level of cholesterol absorption in the 129/Sv animals was reflected in an adaptive reduction in hepatic and intestinal sterol synthesis. When fed lipid-enriched diets, the 129/Sv mice became significantly more hypercholesterolemic and had twofold higher hepatic cholesterol concentrations than did the C57BL/6 animals even though the conversion of cholesterol to bile acids was stimulated equally in both strains. The difference in cholesterol absorption between these mouse strains was not the result of physicochemical factors relating to the size and composition of the intestinal bile acid pool but more likely reflects an inherited difference in one or more of the biochemical steps that facilitate the translocation of sterol across the epithelial cell.  (+info)

Sterol content of the Myxomycetes Physarum polycephalum and P. flavicomum. (10/1766)

The sterol content of two Myxomycetes, Physarum polycephalum and P. flavicomum has been examined. The sterols of the two species are apparently identical, the two major sterols in each being poriferasterol and 22-dihydroporiferasterol. Threee minor sterols are probably delta5-ergostenol, ergostanol, and poriferastanol. The triterpenoids of the two species differ in that, though lanosterol was identified in both, 22-dihydrolanosterol was indicated only in P. flavicomum. The occurrence of lanosterol together with a typical mixture of plant sterols is somewhat unusual.  (+info)

Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51. (11/1766)

CYP51s form the only family of P450 proteins conserved in evolution from prokaryotes to fungi, plants and mammals. In all eukaryotes, CYP51s catalyse 14alpha-demethylation of sterols. We have recently isolated two CYP51 cDNAs from sorghum [Bak, S., Kahn, R.A., Olsen, C. E. & Halkier, B.A. (1997) Plant J. 11, 191-201] and wheat [Cabello-Hurtado, F., Zimmerlin, A., Rahier, A., Taton, M., DeRose, R., Nedelkina, S., Batard, Y., Durst, F., Pallett, K.E. & Werck-Reichhart, D. (1997) Biophys. Biochem. Res. Commun. 230, 381-385]. Wheat and sorghum CYP51 proteins show a high identity (92%) compared with their identity with their fungal and mammalian orthologues (32-39%). Data obtained with plant microsomes have previously suggested that differences in primary sequences reflect differences in sterol pathways and CYP51 substrate specificities between animals, fungi and plants. To investigate more thoroughly the properties of the plant CYP51, the wheat enzyme was expressed in yeast strains overexpressing different P450 reductases as a fusion with either yeast or plant (sorghum) membrane targeting sequences. The endogenous sterol demethylase gene (ERG11) was then disrupted. A sorghum-wheat fusion protein expressed with the Arabidopsis thaliana reductase ATR1 showed the highest level of expression and activity. The expression induced a marked proliferation of microsomal membranes so as to obtain 70 nmol P450.(L culture)-1, with CYP51 representing 1.5% of microsomal protein. Without disruption of the ERG11 gene, the expression level was fivefold reduced. CYP51 from wheat complemented the ERG11 disruption, as the modified yeasts did not need supplementation with exogenous ergosterol and grew normally under aerobic conditions. The fusion plant enzyme catalysed 14alpha-demethylation of obtusifoliol very actively (Km,app = 197 microm, kcat = 1.2 min-1) and with very strict substrate specificity. No metabolism of lanosterol and eburicol, the substrates of the fungal and mammalian CYP51s, nor metabolism of herbicides and fatty acids was detected in the recombinant yeast microsomes. Surprisingly lanosterol (Ks = 2.2 microM) and eburicol (Ks = 2.5 microm) were found to bind the active site of the plant enzyme with affinities higher than that for obtusifoliol (Ks = 289 microM), giving typical type-I spectra. The amplitudes of these spectra, however, suggested that lanosterol and eburicol were less favourably positioned to be metabolized than obtusifoliol. The recombinant enzyme was also used to test the relative binding constants of two azole compounds, LAB170250F and gamma-ketotriazole, which were previously reported to be potent inhibitors of the plant enzyme. The Ks of plant CYP51 for LAB170250F (0.29 microM) and gamma-ketotriazole (0.40 microM) calculated from the type-II sp2 nitrogen-binding spectra were in better agreement with their reported effects as plant CYP51 inhibitors than values previously determined with plant microsomes. This optimized expression system thus provides an excellent tool for detailed enzymological and mechanistic studies, and for improving the selectivity of inhibitory molecules.  (+info)

Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. (12/1766)

These studies were designed to test the hypolipidemic activity of green tea epicatechins (GTE) isolated from jasmine green tea. In Experiment 1, three groups of hamsters were given a semisynthetic diet containing 200 g lard/kg and 1 g cholesterol/kg for 4 wk. The control group received distilled water, and the other two groups received either 15 g/L green tea water extract (GTWE) or 5.0 g/L GTE solution. Both the GTWE and GTE groups had lower concentrations of serum total cholesterol (TC) and triacylglycerols (TG) than the controls (P < 0.05). In Experiment 2, four groups of hamsters received tap water as the drinking fluid, but they were given the same high fat and cholesterol diet supplemented with 0 (control), 1.1, 3.4 or 5.7 g GTE/kg diet. The hypolipidemic effect of jasmine GTE was dose dependent. In Experiment 3, the time-course of changes in serum TC and TG was monitored in hamsters given the high fat diet supplemented with 5.7 g GTE/kg in comparison with that of controls. The hypolipidemic effects of dietary GTE were evident after feeding for 2 wk. Dietary supplementation of GTE did not affect liver fatty acid synthase. However, GTE-supplemented hamsters had higher fecal excretions of total fatty acids, neutral sterols and acidic sterols compared with the control group. In Experiment 4, hamsters were fed nonpurified diet; the control group drank distilled water, and the GTE group drank distilled water containing 5.0 g GTE/L. No differences in activities of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and intestinal acyl CoA:cholesterol acyltransferase were observed. This study suggests that the hypolipidemic activity of GTE is not due to inhibition of synthesis of cholesterol or fatty acid but is most likely mediated by its influence on absorption of dietary fat and cholesterol.  (+info)

Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. (13/1766)

The cholesterol-lowering effects of tangerine peel extract and a mixture of two citrus flavonoids were tested. Male rats were fed a 1 g/100 g high-cholesterol diet for 42 d with supplements of either tangerine-peel extract or a mixture of naringin and hesperidin (0.5 g/100 g) to study the effects of plasma and hepatic lipids, hepatic enzyme activities, and the excretion of fecal neutral sterols. Both the tangerine-peel extract and mixture of two flavonoids significantly lowered the levels (mean +/- SE) of plasma (2.44 +/- 0. 59 and 2.42 +/- 0.31 mmol/L, vs. 3.80 +/- 0.28 mmol/L, P < 0.05), hepatic cholesterol (0.143 +/- 0.017 and 0.131 +/- 0.010 mmol/g vs. 0.181 +/- 0.003 mmol/g, P < 0.05), and hepatic triglycerides (0.069 +/- 0.007 and 0.075 +/- 0.006 mmol/g vs. 0.095 +/- 0.002 mmol/g, P < 0.05) compared to those of the control. The 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (1565.0 +/- 106. 0 pmol. min-1. mg protein-1 and 1783.0 +/- 282 pmol. min-1. mg protein-1 vs. 2487.0 +/- 210.0 pmol. min-1. mg protein-1, P < 0.05) and acyl CoA: cholesterol O-acyltransferase (ACAT) activities (548.0 +/- 65.0 and 615.0 +/- 80.0 pmol. min-1. mg protein-1 vs. 806.0 +/- 105.0 pmol. min-1. mg protein-1, P < 0.05) were significantly lower in the experimental groups than in the control. These supplements also substantially reduced the excretion of fecal neutral sterols compared to the control (211.1 +/- 26.7 and 208.2 +/- 31.6 mg/d vs. 521.9 +/- 53.9 mg/d). The inhibition of HMG-CoA reductase and ACAT activities resulting from the supplementation of either tangerine-peel extract or a combination of its bioflavonoids could account for the decrease in fecal neutral sterol that appears to compensate for the decreased cholesterol biosynthesis in the liver.  (+info)

Highly simplified method for gas-liquid chromatographic quantitation of bile acids and sterols in human stool. (14/1766)

A simple method for the gas-liquid chromatographic quantitation of human fecal bile acids and sterols is described where bile acids are subjected to n-butyl ester derivatization, without prior isolation from the stool, followed by trimethylsilylation of the sterols and bile acids. Under these conditions, bile acid derivatives are well resolved from each other and from the trimethylsilyl ether derivatives of fecal sterols and no overlap occurs. The method was shown to be highly reproducible and recoveries were similar to those obtained with other methods used for fecal bile acid analysis. Application of the method for bile acid and sterol analysis in human stool is described.  (+info)

Oligomerization state influences the degradation rate of 3-hydroxy-3-methylglutaryl-CoA reductase. (15/1766)

The steady-state level of the resident endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), is regulated, in part, by accelerated degradation in response to excess sterols or mevalonate. Previous studies of a chimeric protein (HM-Gal) composed of the membrane domain of HMGR fused to Escherichia coli beta-galactosidase, as a replacement of the normal HMGR cytosolic domain, have shown that the regulated degradation of this chimeric protein, HM-Gal, is identical to that of HMGR (Chun, K. T., Bar-Nun, S., and Simoni, R. D. (1990) J. Biol. Chem. 265, 22004-22010; Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). Since the cytosolic domain can be replaced with beta-galactosidase without effect on regulated degradation, it has been assumed that the cytosolic domain was not important to this process and also that the membrane domain of HMGR was both necessary and sufficient for regulated degradation. In contrast to our previous results with HM-Gal, we observed in this study that replacement of the cytosolic domain of HMGR with various heterologous proteins can have an effect on the regulated degradation, and the effect correlates with the oligomeric state of the replacement cytosolic protein. Chimeric proteins that are oligomeric in structure are relatively stable, and those that are monomeric are unstable. To test the hypothesis that the oligomeric state of the cytosolic domain of HMGR influences degradation, we use an "inducible" system for altering the oligomeric state of a protein in vivo. Using a chimeric protein that contains the membrane domain of HMGR fused to three copies of FK506-binding protein 12, we were able to induce oligomerization by addition of a "double-headed" FK506-like "dimerizer" drug (AP1510) and to monitor the degradation rate of both the monomeric form and the drug-induced oligomeric form of the protein. We show that this chimeric protein, HM-3FKBP, is unstable in the monomeric state and is stabilized by AP1510-induced oligomerization. We also examined the degradation rate of HMGR as a function of concentrations within the cell. HMGR is a functional dimer; therefore, its oligomeric state and, we predict, its degradation rate should be concentration-dependent. We observed that it is degraded more rapidly at lower concentrations.  (+info)

Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. (16/1766)

The anti-Candida potentials of 12 Korean medicinal plants were explored: methanol extracts from Coptis rhizoma and Phellodendron amurense caused significant inhibition of growth of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis. The predominant active components of the extracts were the protoberberines berberine and palmatine; the most potent inhibition of growth was exhibited by berberine on C. krusei (MIC <4 mg/L) and palmatine on C. parapsilosis (MIC 16 mg/L). Both berberine and palmatine inhibited the in-vivo rate of incorporation of L-[methyl-14C]methionine into C-24 of ergosterol in C. albicans (50% inhibition concentration (IC50 values), 25 microM and 300 microM, respectively); this result suggests that sterol 24-methyl transferase (24-SMT) is one of the cellular targets for the antifungal activity of the protoberberines. In-vitro 24-SMT activity in microsomes from the yeast growth form of C. albicans was inhibited by both berberine (inhibition constant (Ki) 232 microM) and palmatine (Ki 257 microM) in a non-competitive manner; inhibition of 24-SMT was more marked for the mycelial form than for the yeast growth form of this organism. Palmatine inhibited chitin synthase from both the yeast and mycelial growth phases of C. albicans in a non-competitive manner (Ki 780 microM). The effects of protoberberines, extracted from established medicinal plants, on both sterol and cell wall biosyntheses in pathogenic fungi indicate that the potential of these compounds, or their semi-synthetic derivatives, as a novel class of antifungal agents should be investigated more fully.  (+info)